
Journal of Nonlinear Modeling and Analysis http://jnma-online.com

Volume 6, Number 1, March 2024, 32–55 DOI:10.12150/jnma.2024.32

Traveling Wave of Three-Species Stochastic
Lotka-Volterra Competitive System∗
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Abstract This paper is devoted to a three-species stochastic competitive
system with multiplicative noise. The existence of stochastic traveling wave
solution can be obtained by constructing sup/sub-solution and using random
dynamical system theory. Furthermore, under a more restrict assumption
on the coefficients and by applying Feynman-Kac formula, the upper/lower
bounds of asymptotic wave speed can be achieved.
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1. Introduction

In this paper, we are interested in the following stochastic three-species competition
model driven by Itô type multiplicative noise

ut = uxx + u(1− u− a1v − b1w) + ϵudWt,

vt = vxx + v(1− v − a2u) + ϵ(v − 1)dWt,

wt = wxx + w(1− w − b2u) + ϵ(w − 1)dWt,

u(0) = u0, v(0) = 1− χ(−∞,0], w(0) = 1− χ(−∞,0],

(1.1)

where u = u(t, x), v = v(t, x) and w = w(t, x) denote the species densities of
three competing species at location x ∈ R and time t > 0 respectively. Moreover,
ai > 0 and bi > 0 represent the interspecific competition coefficients, and the
environment carrying capacity of each species is ruled to be “1”. Further, W (t) is
the white noise. Let ϵ = 0, a2 = b2 and dispersal terms be replaced by nonlocal
dispersal functions. Then equation (1.1) is reduced to the model proposed by Dong,
Li and Wang in [2], and they showed the existence, monotonicity and asymptotic
behavior of traveling waves with bistable dynamics. Based on their work, Wang,
Chen and Wu [24] used a three-species competition model to expand Lotka-Volterra
model to empirical analysis, and concluded that cooperative action is better than
competitive strategy. Furthermore, He and Zhang [6] studied the linear determinacy
of critical wave speed of three-species competitive system with nonlocal dispersal
by constructing more precise conditions and suitable upper solutions. Moreover,
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Liu et al., [14] studied three-species competition-diffusion model in a general case
where every species competes with each other, and they pointed out that the wave
speed of the slowest species is dependent on the other two faster species.

Throughout the paper, we always assume the coefficients of three-species com-
petitive system (1.1) as follows

� (C1) a1 <
1
2 , b1 <

1
2 , a2 ≥ 2, b2 ≥ 2;

� (C2) 2max{a1a2, b1b2} < 2− a1 − b1;

� (C3) 2min{a1a2 + b1b2}+ (a1 + b1 − 1)2 ≥ 1;

� (C4) max{a2 − 1, b2 − 1} ≤ 1
1−a1−b1

.

Obviously, (C1) ∩ (C2) ∩ (C3) ∩ (C4) is not empty. Under condition (C1),
there exist five nonnegative equilibria P1 = (0, 1, 1), P2 = (1, 0, 0), P3 = (0, 1, 0),
P4 = (0, 0, 1) and P5 = (0, 0, 0), where P2 is the only stable equilibrium, and the
traveling wave solution is a trajectory connecting P1 and P2. More precisely, it
reflects that the species u wins the competition rather than the pair (v, w).

Letting v := 1− ṽ, w := 1− w̃ and dropping the tilde, we have
ut = uxx + u(1− a1 − b1 − u+ a1v + b1w) + ϵudWt,

vt = vxx + (1− v)(a2u− v) + ϵvdWt,

wt = wxx + (1− w)(b2u− w) + ϵwdWt,

u(0) = χ(−∞,0], v(0) = χ(−∞,0], w(0) = χ(−∞,0],

(1.2)

and it is easy to see that (1.2) is a stochastic cooperative system, and the two
equilibria P1 and P2 turn to be

P̃1 = (0, 0, 0), P̃2 = (1, 1, 1) (1.3)

respectively.
It is worth mentioning that most existing results for stochastic traveling wave

solution deal with the scaler Fisher-KPP equation. For instance, Tribe [23] stud-
ied the KPP equation with nonlinear multiplicative noise

√
udWt, and Muëller et

al., [16–18] studied the KPP equation with
√
u(1− u)dWt. Both of their works take

the Heaviside function as the initial data, and the main contribution of Muëller
is that he explicitly described the influence brought by the noise, whether it is
weak or strong, and successfully estimated the wave speed with an upper bound
and a lower bound. Zhao et al., [3, 20, 21] confirmed that only if the strength of
noise is moderate, and when the multiplicative noise is k(t)dWt, the effects of noise
would present or the solution would tend to be zero or converge to the determin-
istic traveling wave solution. Huang and Liu [8] studied the KPP equation driven
by dual noises k1udW1(t) and k2(K − u)dW2(t), and revealed the bifurcations of
solution induced by the strength of noise. For stochastic two-species cooperative
system, Wen, Huang and Li [27] used random monotone dynamical systems and
the Kolmogorov tigheness criterion to obtain the existence of stochastic traveling
wave solution, and then by constructing the upper and lower solution and applying
Feynman-Kac formula, they obtained the estimation of the upper bound and lower
bound for wave speed respectively. The novelty of this paper not only in the three-
species competitive system we study, for which there is no relevant work, but also
in our confirmation that the lower bound of wave speed depends on the impact of
vulnerable groups on powerful groups.
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