Existence and Multiplicity of Solutions for a Biharmonic Kirchhoff Equation in $\mathbb{R}^{5 *}$

Ziqing Yuan ${ }^{1, \dagger}$ and Sheng Liu ${ }^{2}$

Abstract

We consider the biharmonic equation $\Delta^{2} u-\left(a+b \int_{\mathbb{R}^{5}}|\nabla u|^{2} d x\right) \Delta u$ $+V(x) u=f(u)$, where $V(x)$ and $f(u)$ are continuous functions. By using a perturbation approach and the symmetric mountain pass theorem, the existence and multiplicity of solutions for this equation are obtained, and the power-type case $f(u)=|u|^{p-2} u$ is extended to $p \in(2,10)$, where it was assumed $p \in(4,10)$ in many papers.

Keywords Biharmonic equation, multiplicity of solutions, variational method
MSC(2010) 35J85, 47J30, 49J52

1. Introduction

We consider the existence and multiplicity of solutions for the following biharmonic equation

$$
\left\{\begin{array}{l}
\Delta^{2} u-\left(a+b \int_{\mathbb{R}^{5}}|\nabla u|^{2} d x\right) \Delta u+V(x) u=f(u) \tag{1.1}\\
u(x)=u(|x|) \in H^{2}\left(\mathbb{R}^{5}\right)
\end{array}\right.
$$

where $V \in C\left(\mathbb{R}^{5}, \mathbb{R}\right)$, $f \in C(\mathbb{R}, \mathbb{R})$. Biharmonic equations appear in many areas, for example, some of these problems arise from different areas of applied mathematics and physics such as surface diffusion on solids, Mircro Electro-Mechanical systems, and flow in Hele-Shaw cells (see [7]). Also, this kind of equations can describe the static deflection of an elastic plate in a fluid and the study of traveling waves in suspension bridges $[6,15]$. These equations have been discussed by many authors. Indeed, if we replace $f(u)$ by $f(x, u)$ and set $V(x)=0$, and a domain $\Omega \subset \mathbb{R}^{3}$, problem (1.1) becomes the following biharmonic elliptic equation of Kirchhoff type

$$
\left\{\begin{array}{l}
\Delta^{2} u-\left(a+b \int_{\mathbb{R}^{5}}|\nabla u|^{2} d x\right) \Delta u=f(x, u) \text { in } \Omega \tag{1.2}\\
u=\nabla u=0 \text { on } \partial \Omega
\end{array}\right.
$$

[^0]which is related to the general form of the following stationary analogue of the equation
\[

$$
\begin{equation*}
u_{t t}+\Delta^{2} u-\left(a+b \int_{\mathbb{R}^{5}}|\nabla u|^{2} d x\right) \Delta u=f(x, u), \quad x \in \Omega \tag{1.3}
\end{equation*}
$$

\]

Equation (1.3) is used to describe some phenomena appearing in different engineering, physical, and other scientific fields, because it is regarded as a good approximation for describing nonlinear vibrations of beams or plates [2,4]. For example, on bounded domains, Zhang and Wei [19] used the mountain pass theorem and linking theorem to obtain the existence and multiplicity of results for the following problem

$$
\left\{\begin{array}{l}
\Delta^{2} u+a \Delta u=\lambda|u|^{q-2} u+f(x, u) \text { in } \Omega \tag{1.4}\\
u=\nabla u=0 \text { on } \partial \Omega
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{N}$ is a smooth bounded domain, a is a constant, $f \in C(\bar{\Omega} \times \mathbb{R}, \mathbb{R})$ and $1<q<2$. If $\lambda=0$, An and Liu [1] obtained the existence of solutions of (1.4). By using critical theorems, the multiple results of (1.4) were proved in [9]. Some related results can be found in $[8,10,16]$ and the references therein.

As the presence of term $\int_{\Omega}|\nabla u|^{2}$, problem (1.1) is no longer a pointwise identity and therefore, this equation is viewed as an elliptic equation coupled with nonlocal terms. The competing effect of the non-local term brings some mathematical challenges to the analysis, and also makes the study of such problems particularly interesting. Another difficulty lies in proving the boundedness of PS-sequences, which is very important to use variational methods. In many papers, in order to get the boundedness of PS-sequences, such as in [11], the authors need to assume $p>4$ in (H2) and the famous AR-condition. While in our paper, we relax $p>2$ and drop the AR-condition.

In order to state our main results, we give the following hypotheses.
$(H 0) V(x)=V(|x|)$ for any $x \in \mathbb{R}^{5}$, and $\inf _{x \in \mathbb{R}^{5}} V(x):=V_{0}>0$;
$(H 1) f \in C(\mathbb{R}, \mathbb{R})$ and $\lim _{t \rightarrow 0} \frac{f(t)}{t}=0$;
(H2) $\lim \sup _{|t| \rightarrow \infty} \frac{|f(t)|}{|t|^{p-1}}<\infty$ for some $p \in(2,10)$;
(H3) For $\alpha \in\left(\frac{1}{3}, \frac{2}{5}\right), \quad t \neq 0, f(t) t \geq(2+5 \alpha) F(t)>0$, where $F(t)=\int_{\mathbb{R}^{5}} f(t) d t$;
(H4) $|f(t)| \leq c_{1}|t|+c_{2}|t|^{s-1}, s \in(2,10)$;
$(H 5) \quad F(-t)=F(t), \forall t \in \mathbb{R}$.
Note that if $b=0$ in problem (1.1), and it transforms into the following biharmonic equation

$$
\begin{equation*}
\Delta^{2} u-a \Delta u+V(x) u=f(u) \tag{1.5}
\end{equation*}
$$

which does not depend on the nonlocal term $\int_{\mathbb{R}^{5}}|\nabla u|^{2}$ any more. In contrast to problem (1.5), the nonlocal term makes problem (1.1) more complex in finding sign-changing solutions. The main difficulties are as follows:
(1) We don't have the following decomposition

$$
\hat{I}(u)=\hat{I}\left(u^{+}\right)+\hat{I}\left(u^{-}\right), \quad\left\langle I^{\prime}(u), u^{ \pm}\right\rangle=\left\langle I^{\prime}\left(u^{ \pm}\right), u^{ \pm}\right\rangle
$$

where \hat{I} is the energy functional of (1.5) given by

$$
\hat{I}(u)=\frac{1}{2} \int_{\mathbb{R}^{5}}\left(|\Delta u|^{2}+a|\nabla u|^{2}+V(x) u^{2}\right)-\int_{\mathbb{R}^{5}} F(u) .
$$

[^0]: ${ }^{\dagger}$ Corresponding author.
 Email address:junjyuan@sina.com(Z. Yuan), nmamtfo88@163.com (S. Liu).
 ${ }^{1}$ Department of Mathematics, Shaoyang University, Shaoyang, Hunan 422000, China
 ${ }^{2}$ Big Data College, Tongren University, Tongren, Guizhou 554300, China
 *The authors were supported by the Natural Science Foundation of Hunan Province (Grant No. 2023JJ30559), Guizhou Technology Plan Project(Grant No. [2020]1Y004) and National Natural Science Foundation of China (Grant No. 11901126).

