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Abstract. The stochastic block model is a canonical random graph model for clustering and community detec-
tion on network-structured data. Decades of extensive study on the problem have established many profound
results, among which the phase transition at the Kesten-Stigum threshold is particularly interesting both from
a mathematical and an applied standpoint. It states that no estimator based on the network topology can per-
form substantially better than chance on sparse graphs if the model parameter is below a certain threshold.
Nevertheless, if we slightly extend the horizon to the ubiquitous semi-supervised setting, such a fundamental
limitation will disappear completely. We prove that with an arbitrary fraction of the labels revealed, the detec-
tion problem is feasible throughout the parameter domain. Moreover, we introduce two efficient algorithms,
one combinatorial and one based on optimization, to integrate label information with graph structures. Our
work brings a new perspective to the stochastic model of networks and semidefinite program research.
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1 Introduction

Clustering has long been an essential subject of many research fields, such as machine
learning, pattern recognition, data science, and artificial intelligence. In this section, we
include some background information on its general setting and the semi-supervised ap-
proach.

1.1 Clustering on graphs

The basic task of clustering or community detection in its general form is, given a (possi-
bly weighted) graph, to partition its vertices into several densely connected groups with
relatively weak external connectivity. This property is sometimes also called assortativity.
Clustering and community detection are central problems in machine learning and data
science with various applications in scientific research and industrial development. A con-
siderable amount of data sets can be represented in the form of a network that consists of
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interacting nodes, and one of the first features of interest in such a situation is to under-
stand which nodes are similar, as an end or as a preliminary step towards other learning
tasks. Clustering is used to find genetically similar sub-populations [60], to segment im-
ages [65], to study sociological behavior [59], to improve recommendation systems [47], to
help with natural language processing [30], etc. Since the 1970s, in different communities
like social science, statistical physics, and machine learning, a large diversity of algorithms
have been developed such as:

• Hierarchical clustering algorithms [38] build a hierarchy of progressive communities,
by either recursive aggregation or division.

• Model-based statistical methods, including the celebrated expectation-maximization
(EM) clustering algorithm proposed in [23], fit the data with cluster-exhibiting statis-
tical models.

• Optimization approaches identify the best cluster structures regarding carefully de-
signed cost functions, for instance, minimizing the cut [34] and maximizing the Gir-
van-Newman modularity [58].

Multiple lines of research intersect at a simple random graph model, which appears
under many different names. In the machine learning and statistics literature around
social networks, it is called stochastic block model (SBM) [36], while it is known as the
planted partition model [17] in theoretical computer science and referred to as inhomoge-
neous random graph model [14] in the mathematics literature. Moreover, it can also be
interpreted as a spin-glass model [22], a sparse-graph code [5], a low-rank random matrix
model [50], and more.

The essence of SBM can be summarized as follows: Conditioned on the vertex labels,
edges are generated independently and the probability only depends on which clusters
the pairs of vertices belong to. We consider its simplest form, namely the symmetric SBM
consisting of two blocks, also known as the planted bisection model.

Definition 1.1 (Planted Bisection Model). For n ∈ N and p, q ∈ (0, 1), let G(n, p, q) denote
the distribution over graphs with n vertices defined as follows. The vertex set is partitioned uni-
formly at random into two subsets S1, S2 with |Si| = n/2. Let E denote the edge set. Conditional
on this partition, edges are included independently with probability

P
(

(i, j) ∈ E | S1, S2

)

=

{

p, if {i, j} ⊆ S1 or {i, j} ⊆ S2,

q, if i ∈ S1, j ∈ S2 or i ∈ S2, j ∈ S1.
(1.1)

Note that if p = q, the planted bisection model is reduced to the so-called Erdős-Rényi
random graph where all edges are generated independently with the same probability.
Hence, there exists no cluster structure. But if p ≫ q, a typical graph will have two well-
defined clusters. The scale of p and q also plays a significant role in the resulting graph,
which will be discussed in detail later. They govern the amount of signal and noise in the
graph’s generating process. As the key parameters that researchers work with, they depict
various regimes and thresholds.
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