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Abstract. The multivariate feedback particle filter (FPF) is formulated from the view-

point of splitting-up methods. The essential difference between this formulation and

the formal derivation is that instead of one-time control at a discrete time instant, we

consider the updating stage as a stochastic flow of particles in each time interval. This al-

lows to easily obtain a consistent stochastic flow by comparing the Kolmogorov forward

equation of particles and the updating part of the Kushner’s equation in the splitting-up

method. Moreover, if an optimal stochastic flow exists, the convergence of the splitting-

up method can be studied by passing to an FPF with a continuous time. To guarantee the

existence of a stochastic flow, we validate the Poincaré inequality for the alternating dis-

tributions, given the time discretization and the observation path, under mild conditions

on the nonlinear filtering system and the initial state. Besides, re-examining the original

derivation of the FPF, we show that the optimal transport map between the prior and

the posterior is an f -divergence invariant in the abstract Bayesian inference framework.
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1. Introduction

The nonlinear filtering (NLF), often called the nonlinear estimation, is to give the

state/signal X t a proper estimation based on the observation history {zs, 0 ≤ s ≤ t} in

some way, say the conditional expectation E[X t |Zt], Zt := σ({zs, 0 ≤ s ≤ t}). It was first

investigated in pioneering works of Wiener [35] and Kolmogorov [15]. The most influential

work in filtering theory is the classic Kalman filter (KF) [16] and Kalman-Bucy filter [17],

which are optimal for linear filtering problems. To deal with nonlinear and non-Gaussian

problems, there are lots of derivatives of KF, including the extended Kalman filter [10],
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unscented Kalman filter [14], ensemble Kalman filter [8], etc. All these approaches aim to

obtain the approximation of interested statistical quantities, say expectation, variance, etc.,

and are referred to as local approaches [23]. In contrast, global approaches approximate

the posterior distribution of the state x t conditioning on the history of observation, which

satisfies the Kushner’s equation [19]. It is clear that global approaches provide more accu-

rate estimation of the state than local ones, but with much heavier computational burden

as the trade-off.

One of the aims of the global approach is the numerical solution of the Kushner’s

equation or its unnormalized version — viz. the Duncan-Mortensen-Zakai (DMZ) equa-

tion [7, 29, 40]. Since such stochastic partial differential equations (SPDEs) cannot be

solved in a closed form, Bensoussan et al. [3] proposed to approximate the solution of

the DMZ equation by splitting it into two alternating processes — viz. prediction and up-

dating, motivated by the Trotter decomposition from semigroup theory. One of them is

the solution of a deterministic second order parabolic partial differential equation (PDE),

while the other one satisfies a stochastic differential equation (SDE). Both are easier to

be handled than the original DMZ equation. Ito et al. [13] pointed out that the Zakai’s

equation has serious deficiencies as a computational tool, due to its fast dissipation with

respect to time and the effect of intermittency — i.e. the large peaks. They investigated

a splitting-up method for the Kushner’s equation. In fact, they showed the approximated

solution converges in the weak and strong L2-sense. The splitting-up method has also been

extended to the NLF problems with the correlated noises [9, 25]. In 2008, Yau et al. [39]

who proposed a feasible algorithm to the robust piecewise DMZ equation. Later on, the

real-time performance of this algorithm for 1-dimensional time-varying system has been

numerically validated by the second author of this paper and her co-authors [26,27].

Besides these SPDE based algorithm, the most popular global approach is the so-called

particle filter (PF) [1]. The PF is a simulation-based algorithm, which approximates the

posterior distribution by the empirical distribution of the particles {X i
t}i=1,...,N . It is well-

known that the traditional PF bears particle impoverish and degeneracy. A common remedy

to avoid these shortcomings is to vigor the particles by resampling according to the impor-

tance weight at each time step. After the proper resampling strategy, the PF can propagate

the posterior distribution with accuracy improved by increasing the number of the parti-

cles [5]. Nevertheless, the choice of the importance weight is crucial, problem-dependent

and with no universal guidelines. Recently, the idea of transporting measures via coupling

techniques has been introduced in the NLF [32] to avoid the resampling in PF. The cou-

plings can be viewed as the nonlinear transformations from the priori distribution to the

posterior distribution. It is well-known that the couplings are not unique. The uniqueness

may be guaranteed by imposing some optimality conditions. Nevertheless, the major diffi-

culty of this method is the intractability of the transport map. The transport maps induced

by the flows of the ordinary differential equations are investigated in the particle flow [6]

and the Gibbs flow [11]. Related ideas also appear in feedback particle filter (FPF) [38].

It is mentioned in [32, Section 5] that the consistency of the FPF may shed some light on

that of the stochastic map filter in a continuous-time setting. This motivates us to rederive

the FPF in the continuous setting.


