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Abstract. We propose an efficient semi-Lagrangian characteristic mapping method for
solving the one+one-dimensional Vlasov–Poisson equations with high precision on a
coarse grid. The flow map is evolved numerically and exponential resolution in lin-
ear time is obtained. Global third-order convergence in space and time is shown and
conservation properties are assessed. For benchmarking, we consider linear and non-
linear Landau damping and the two-stream instability. We compare the results with a
Fourier pseudo-spectral method and results from the literature. The extreme fine-scale
resolution features are illustrated showing the method’s capabilities to efficiently treat
filamentation in fusion plasma simulations.

AMS subject classifications: 35Q83, 65M25, 68W10, 76X05

Key words: Characteristic mapping method, kinetic equations, Vlasov–Poisson, plasma.

1 Introduction

Flows in the general setting transport quantities, e.g. fluids, plasmas, particles or their
probability distribution function (PDF), from one place to another. Typically they gener-
ate rich mathematical multi-scale structures even from simple analytical initial conditions
and require well-adapted numerical methods to solve the underlying governing partial
differential equations. In the present work, we focus on the Vlasov–Poisson (VP) system,
modeling particle evolution under their self-consistent electric field, and neglecting their
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collisions. We consider the equation in 1d+1d, i.e. in the space of positions and velocities.
This transport equation in phase space has numerous applications in plasma and astro-
physics [32]. A prominent example is Landau damping in statistical physics of ionized
gases.

As a kinetic equation, the VP equation is intrinsically high-dimensional, however,
it is especially challenging due to the filamentation of the particle distribution function
in phase space. The filamentation is a physical property of the system, that leads to a
continuous generation of fine scales with increasing time. Resolving these scales requires
computer simulations to accumulate more and more computer storage and resources
within time.

To overcome the filamentation problem in numerical simulations two main ap-
proaches have been followed: the Lagrangian approach and the semi-Lagrangian ap-
proach. These methods shift the evolution of the PDF towards the evolution of its under-
lying transport structure. In the purely Lagrangian approach, known as the particle-in-
cell method (PIC) (see for review [5, 21, 42]), a set of Np particles is used to statistically
approximate the distribution function in velocity space. The particles move according to
their equations of motion in an electromagnetic field that is interpolated from a fixed grid
to the particle’s position. As the PDF is determined statistically the overall result is sub-
ject to statistical noise, with the variance decreasing only slowly with 1/

√
Np. Different

approaches for denoising have been proposed, see e.g. [35], among them are wavelet-
based density estimation [19, 41].

In order to obtain even more accurate results, while simultaneously respecting the
particle’s equation of motion, semi-Lagrangian approaches have been developed. This
special type of Eulerian method represents the PDF on a fixed grid whereas time is
evolved with the help of particle trajectories, known as the characteristic curve. Along
these curves, the PDF is conserved and thus constant in time. The PDF is computed by
tracing back the trajectory and interpolating its origin back on an Eulerian mesh. The first
approach in this direction was already presented in the seventies by Cheng and Knorr [8]
and has ever since got continuous attention in research [3, 4, 9–11, 14, 28, 37, 38].

In [38] Sonnendrücker et al. formalized the semi-Lagrangian approach for solving the
VP equations by employing spline interpolations at the feet of the characteristics. While
this method is renowned for its high precision, it is accompanied by the need to solve
a global tri-diagonal system induced by the spline interpolation scheme. To overcome
this computational challenge, [4] introduced local interpolation schemes based on Her-
mite and Lagrange polynomials, which were shown to exhibit high-order convergence
results in space and second-order accuracy in time, as documented by [3]. The introduc-
tion of local interpolation schemes enhanced the parallelizability and adaptability of the
method to unstructured meshes [4]. However, it introduced the requirement to trans-
port gradients as additional fields. Subsequent developments in this direction focused
on maintaining positivity and mass conservation, as presented for the backward [9], and
the forward semi-Lagrangian method [11].

Another prominent methodology in the semi-Lagrangian setting is built on discon-


