Some Inequalities Concerning the Polar Derivative of a Polynomial-II

Abdullah Mir* and Bilal Dar
Department of Mathematics, University of Kashmir, Srinagar, 190006, India

Received 25 August 2012; Accepted (in revised version) 18 November 2013
Available online 31 December 2013

Abstract

In this paper, we consider the class of polynomials $P(z)=a_{n} z^{n}+$ $\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, 1 \leq \mu \leq n$, having all zeros in $|z| \leq k, k \leq 1$ and thereby present an alternative proof, independent of Laguerre's theorem, of an inequality concerning the polar derivative of a polynomial.

Key Words: Polar derivative of a polynomial.
AMS Subject Classifications: 30A10, 30C10, 30C15

1 Introduction and statement of results

Let $P(z)$ be a polynomial of degree n and $P^{\prime}(z)$ be its derivative, then according to the well-known Bernstein's inequality [2] on the derivative of a polynomial, we have

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \leq n \operatorname{Max} x_{|z|=1}|P(z)| . \tag{1.1}
\end{equation*}
$$

The equality (1.1) is best possible and equality holds if and only if $P(z)$ has all its zeros at the origin.

For the class of polynomials $P(z)$ of degree n having all zeros in $|z| \leq 1$, Turan [7] proved that

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2} \operatorname{Max}_{|z|=1}|P(z)| . \tag{1.2}
\end{equation*}
$$

The inequality (1.2) is best possible and become equality for polynomials having all zeros on $|z|=1$.

[^0]As an extension of (1.2), Malik [6] proved that if $P(z)$ has all its zeros in $|z| \leq k, k \leq 1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k} \operatorname{Max}_{|z|=1}|P(z)| . \tag{1.3}
\end{equation*}
$$

As a refinement of (1.3), Govil [5] under the same hypothesis proved that

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k}\left\{\operatorname{Max}_{|z|=1}|P(z)|+\frac{1}{k^{n-1}} \operatorname{Min}_{|z|=k}|P(z)|\right\} . \tag{1.4}
\end{equation*}
$$

Aziz and Shah [1] generalized (1.4) in a different direction and proved that, if $P(z)=$ $a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, \mu \geq 1$, is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k^{\mu}}\left\{\operatorname{Max}_{|z|=1}|P(z)|+\frac{1}{k^{n-\mu}} \operatorname{Min}_{|z|=k}|P(z)|\right\} . \tag{1.5}
\end{equation*}
$$

For $\mu=1$, inequality (1.5) reduces to inequality (1.4).
Let $D_{\alpha} P(z)$ denotes the polar derivative of the polynomial $P(z)$ of degree n with respect to the point $\alpha \in C$. Then

$$
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z) .
$$

The polynomial $D_{\alpha} P(z)$ is of degree at most $n-1$ and it generalizes the ordinary derivative in the sense that

$$
\lim _{\alpha \rightarrow \infty}\left[\frac{D_{\alpha} P(z)}{\alpha}\right]=P^{\prime}(z)
$$

Dewan, Singh and Lal [4] extend the inequality (1.5) to the polar derivative of a polynomial $P(z)$ and proved that if $P(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, 1 \leq \mu \leq n$, has all its zeros in $|z| \leq k, k \leq 1$, then for every real or complex number α with $|\alpha| \geq k^{\mu}$,

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|D_{\alpha} P(z)\right| \geq n\left(\frac{|\alpha|-k^{\mu}}{1+k^{\mu}}\right) \operatorname{Max}_{|z|=1}|P(z)|+\frac{n(|\alpha|+1)}{k^{n-\mu}\left(1+k^{\mu}\right)} \operatorname{Min}_{|z|=k}|P(z)| . \tag{1.6}
\end{equation*}
$$

As a refinement of (1.6), Dewan, Singh and Mir [3] proved the following result:
Theorem 1.1. Let $P(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, 1 \leq \mu \leq n$, be a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then for every real or complex number α with $|\alpha| \geq k^{\mu}$, we have

$$
\operatorname{Max}_{|z|=1}\left|D_{\alpha} P(z)\right| \geq n\left(\frac{|\alpha|-A_{\mu}}{1+k^{\mu}}\right) \operatorname{Max}_{|z|=1}|P(z)|+\frac{n}{k^{n}}\left(\frac{|\alpha| k^{\mu}+A_{\mu}}{1+k^{\mu}}\right) \operatorname{Min}_{|z|=k}|P(z)|,
$$

where

$$
\begin{equation*}
A_{\mu}=\frac{n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{\mu-1}+\mu\left|a_{n-\mu}\right|} . \tag{1.7}
\end{equation*}
$$

[^0]: *Corresponding author. Email addresses: mabdullah_mir@yahoo.co.in (A. Mir), darbilal85@ymail.com (B. Dar)

