Endpoint Estimates for Hardy Operator's Conjugate Operator with Power Weight on *n*-Dimensional Space

Xudong Nie¹, Shimo Wang² and Dunyan Yan^{1,*}

 ¹ School of Mathematics Science, University of Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
² School of Mathematics Science, Heilongjiang University, Harbin 150080, Heilongjiang, China

Received 29 January 2013; Accepted (in revised version) 2 September 2013

Available online 30 September 2013

Abstract. In this paper, we establish two integral inequalities for Hardy operator's conjugate operator at the endpoint on *n*-dimensional space. The operator H_n^* is bounded from $L^1_{x^{\alpha}}(\mathbb{G}^n)$ to $L^q_{x^{\beta}}(\mathbb{G}^n)$ with the bound explicitly worked out and the similar result holds for \mathcal{H}_n^* .

Key Words: Conjugate operator, power weight, endpoint estimate.

AMS Subject Classifications: 42B20, 42B35

1 Introduction

Let *f* be a non-negative integrable function on $G := (0, \infty)$. The classical Hardy operator is defined by

$$Hf(x) := \frac{1}{x} \int_0^x f(t) dt,$$

and its conjugate operator

$$H^*f(x) := \int_x^\infty \frac{f(t)}{t} dt$$

for all x > 0.

For *n*-dimensional case with $n \ge 2$, Hardy operators can be defined on product space as

$$H_n f(x) := \frac{1}{x_1 \cdots x_n} \int_0^{x_1} \cdots \int_0^{x_n} f(t_1, \cdots, t_n) dt_1 \cdots dt_n,$$
(1.1)

http://www.global-sci.org/ata/

©2013 Global-Science Press

^{*}Corresponding author. *Email addresses:* niexudong10@mails.ucas.ac.cn (X. Nie), wangshimo2012@sina.cn (S. Wang), ydunyan@ucas.ac.cn (D. Yan)

and its conjugate operator defined as

$$H_n^* f(x) := \int_{x_1}^{\infty} \cdots \int_{x_n}^{\infty} \frac{f(t_1, \cdots, t_n)}{t_1 \cdots t_n} dt_1 \cdots dt_n,$$
(1.2)

for $x = (x_1, x_2, \dots, x_n) \in \mathbb{G}^n = (0, \infty)^n$, where *f* is any measurable function on \mathbb{G}^n . Another definition is given by Christ and Grafakos in [2] as follows

$$\mathcal{H}_n f(x) = \frac{1}{\omega_n |x|^n} \int_{|y| < |x|} f(y) dy, \qquad (1.3)$$

and

$$\mathcal{H}_n^* f(x) = \frac{1}{\omega_n} \int_{|y| > |x|} \frac{f(y)}{|y|^n} dy, \qquad (1.4)$$

for $x \in \mathbb{R}^n \setminus \{0\}$, where *f* is any measurable function on \mathbb{R}^n and $\omega_n = \frac{\pi^{n/2}}{\Gamma(1+n/2)}$ is the volume of the unit ball in \mathbb{R}^n .

For the case $1 , the boundedness of the operators <math>H_n$ and H_n^* from $L_{x^{\alpha}}^p(\mathbb{G}^n)$ to $L_{x^{\beta}}^q(\mathbb{G}^n)$ were discussed in many papers (cf. [1, 13, 15, 17]). The estimates on the endpoint for the operator H_n and \mathcal{H}_n were systematically studied in [18]. It should be pointed out that the operator H_n , $n \ge 2$, defined by (1.1) fails to be of weak type of (1,1), however, H_n is bounded from $L_{x^{\alpha}}^1(\mathbb{G}^n)$ to $L_{x^{\beta}}^q(\mathbb{G}^n)$ for arbitrary $n \in \mathbb{N}$. This shows that some power weight can change the boundedness of the operator H_n on the endpoint. Motivated by the idea of the reference [18], it is natural for us to discuss the the boundedness of the operator H_n^* on the endpoint.

The purpose of this paper is to establish the boundedness of the operators H_n^* and \mathcal{H}_n^* on the endpoint.

Throughout the paper, we have the following notations. For two *n*-dimensional vectors $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ and $\beta = (\beta_1, \beta_2, \dots, \beta_n)$, $\alpha \cdot \beta = \alpha_1 \beta_1 + \alpha_2 \beta_2 + \dots + \alpha_n \beta_n$, $\alpha < \beta$ means each $\alpha_i < \beta_i$, $i = 1, \dots, n$, and $x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$, $x \in \mathbb{G}^n$. For some bold type figures and letters, we have $\mathbf{1} = (1, \dots, 1)$, $\mathbf{p} = (p, \dots, p)$. It is clear that $x^1 = x_1 \cdots x_n$.

Now we first formulate our main results as follows.

Theorem 1.1. Suppose that f is any non-negative measurable function on \mathbb{G}^n and $1 \le q < \infty$. If α and β are two n-tuples in \mathbb{R}^n such that $\alpha + 1 > 0$ and $\beta + 1 = q(\alpha + 1)$, then the following inequality

$$\left(\int_{\mathbf{G}^n} \left(H_n^* f(x)\right)^q x^\beta dx\right)^{\frac{1}{q}} \le \left(\prod_{i=1}^n \frac{1}{(\beta_i+1)}\right)^{\frac{1}{q}} \int_{\mathbf{G}^n} f(x) x^\alpha dx \tag{1.5}$$

holds for the operator H_n^* defined by (1.2), that is, H_n^* is bounded from $L_{x^{\alpha}}^1(\mathbb{G}^n)$ to $L_{x^{\beta}}^q(\mathbb{G}^n)$ with the norm of H_n^* satisfying

$$||H_n^*|| \le \left(\prod_{i=1}^n \frac{1}{(\beta_i+1)}\right)^{\frac{1}{q}}.$$

268