VORTEX MOTION LAW OF AN EVOLUTIONARY GINZBURG-LANDAU EQUATION IN 2 DIMENSIONS*

Liu Zuhan

(Department of Mathematics, Normal College, Yangzhou University, Yangzhou 225002, China) (Received Mar. 30, 2000; revised Sept. 11, 2000)

Abstract We study the asymptotic behavior of solutions to an evolutionary Ginzburg-Landau equation. We also study the dynamical law of Ginzburg-Landau vortices of this equation under the Neuman boundary conditions. Away from the vortices, we use some measure theoretic arguments used by F.H.Lin in [1] to show the strong convergence of solutions. This is a continuation of our earlier work [2].

Key Words Ginzburg-Landau equations; vortex motion; asymptotic behavior; ε-regularity.

1991 MR Subject Classification 35J55, 35Q40.
Chinese Library Classification 0175.29, 0175.26.

1. Introduction

We consider the following problem:

$$\frac{\partial u_{\varepsilon}}{\partial t} = \Delta u_{\varepsilon} + \frac{1}{\varepsilon^2} (\beta^2(x) - |u_{\varepsilon}|^2) u_{\varepsilon}, \quad (x, t) \in \Omega \times R_+ \tag{1.1}$$

$$u_{\varepsilon}(x,0) = \beta u_{\varepsilon}^{0}(x), \quad x \in \Omega$$
 (1.2)

$$\frac{\partial u_{\varepsilon}}{\partial \nu}(x,t) = 0, \quad x \in \partial\Omega, \quad t \ge 0$$
 (1.3)

where Ω is a smooth bounded domain in R^2 , ν the exterior unit normal vector along $\partial\Omega$. $\beta(x):\Omega\to R$ is a smooth function (say C^3) with positive lower bound. $u_{\varepsilon}:\Omega\times R_+\to R^2$.

The initial datum $\beta u_{\varepsilon}^{0}(x)$ is smooth and satisfies (1.3). In addition, it also satisfies the following assumptions:

$$||u_{\varepsilon}^{0}(x)||_{C(\bar{\Omega})} \le K \tag{1.4}$$

$$\int_{\Omega} \rho^2(x) [|\nabla u_{\varepsilon}^0(x)|^2 + \frac{1}{\varepsilon^2} \beta^2 (1 - |u_{\varepsilon}^0|^2)^2] dx \le K \tag{1.5}$$

This work supported by National Natural Science Foundation of China.

for a constant K and some m distint points b_1, \dots, b_m in Ω , where $\rho(x) = \min\{|x - b_j| : j = 1, 2, \dots, m\}$.

$$E(u_{\varepsilon}^{0}) = \frac{1}{2} \int_{\Omega} [|\nabla u_{\varepsilon}^{0}|^{2} + \frac{1}{2\varepsilon^{2}} \beta^{2}(x) (|u_{\varepsilon}^{0}(x)|^{2} - 1)^{2}] dx$$

$$\leq K[|\ln \varepsilon| + 1] \tag{1.6}$$

The system (1.1)-(1.3) can be viewed as a simplified evolutionary Ginzburg-Landau equation in the theory superconductivity of inhomonogence ([3]).

The aim of this article is to understand the dynamics of vortices, or zeros, of solutions u of (1.1)–(1.3). Its importance to the theory of superconductivity and applications is addressed in many earlier work ([3–7]).

Now we briefly describe some mathematical advances concerning this problem. In $\beta=1$, the dynamical law for vortices was formally derived in [4,8]. The first rigorous mathematical proof of this dynamical law, which is of form $\frac{\partial}{\partial t}a(t)=-\nabla w(a(t))$, was given by F.H.Lin in [5,9]. See also [10, Lecture 3]. In [5,9], one allows the vortices of degree ± 1 and assumes that they have the same sign. For the vortices of degree ± 1 (possibly of different signs), the same dynamical law was shown later in [11]. We refer to [1] for vortex dynamics under the Neumann boundary conditions or pinning conditions. In the 3-dimensional case, $\beta=1$, a similar dynamical law was also established in [1] for nearly paralled filaments. The short-time dynamical law for codimension 2 interfaces in higher dimensions was shown in [1]. When $\beta\not\equiv 1$, in the 2-dimensional case, the dynamical law was established in [12] under the first boundary condition. But, here one proves only that u_{ε} conveges weakly to the limit function in H_{loc}^1 as $\varepsilon \to 0^+$.

The main goal of the present paper is to examine the vortex dynamics without topological constraints, and proves that u_{ε} converges strongly to the limit function in H^1_{loc} as $\varepsilon \to 0^+$.

To understand the behavior of u of (1.1)–(1.3) as $t \to \infty$, one has to look at steady state solutions u_{ε} , that is, the minimizer of the energy functional

$$E_{\varepsilon}(u) = \frac{1}{2} \int_{\Omega} \left[|\nabla u|^2 + \frac{1}{2\varepsilon^2} (\beta^2 - |u|^2)^2 \right] dx$$

A complete characterizator of asymptotic behavior (as $\varepsilon \to 0^+$) of vortices of u_ε is given in the recent work [2].

Now we claim our main theorem.

Theorem 1.1 Assume that $\beta \in C^3(\bar{\Omega})$ and $\beta_0 = \min_{\bar{\Omega}} \beta(x) > 0$. Under the assumptions (1.4)-(1.6), one has, for any $0 \le t \le T$, that

$$u_{\varepsilon}(x,t) \to u_{*}(x,t)$$
 (1.7)

strongly in $H^1_{loc}(\bar{\Omega}\times[0,T]\setminus\{(a_j(t),t):t\in[0,T],j=1,2,\cdot,m\})$. Here the convergence is understood in the sense that for any sequence of ε' going to zero, there is a subsequence