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Abstract We study the asymptotic hehavior of solutions to an evolutionary
Ginzburg-Landau equation. We also study the dynamical law of Ginzburg-Landau vor-
tices of this equation under the Neuman boundary conditions. Away from the vortices,
we use some measure theoretic arguments used by F.H.Lin in [1] to show the strong
convergence of solutions. This is a continuation of our earlier work [2].
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1. Introduction

We consider the following problem:

%ii = Au, + éfﬁz{m] — fue P, (=) €% B (11)
U, 0) = gul(z), z€0 (1.2)
%§u¢}=m redf, tz0 (1.3)

where € is a smooth bounded domain in R%, v the exterior unit normal vector along
a0, Blz) : @ — Risa smooth funetion (say C°) with positive lower bound. e :
Q x By — R

The initial datum fu?(z) is smooth and satisfies (1.3). In addition, it also satisfies
the following assumptions: ]

lug ()l om < & (1.4)
[ @IV + 6% i) ld < K (15)
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for a constant K and some m distint points by, - - - b 10 {2, where p(z) = min{|z — b;| :
i= 112,"‘,1“?'1}.

B() = 5 [ 192 + 282 @) (2@ - 1)?)ds
< K||lne| + 1] - (L.6)

The system (1.1)-(1.3) can be viewed as a simplified evolutionary Ginzburg-Landau
equation in the theory superconductivity of inhomonogence ([3]).

The aim of this article is to understand the dynamics of vortices, or zeros, of solu-
tions u of (1.1)-(1.3). Its importance to the theory of superconductivity and applica-
tions is addressed in many earlier work ([3-71).

Now we briefly describe some mathematical advances concerning this problem. In
B =1, the dynamical law for vortices was formally derived in [4,8]. The first rigorous

mathematical proof of this dynamical law, which is of form ﬂ—u(i] = —Vuw(a(t)), was

given by F.H.Lin in [5,9]. See also [10, Lecture 3]. In [5,9], one allows the vortices of
degree +1 and assumes that they have the same sign. For the vortices of degree +1
(possibly of different signs), the same dynamical law was shown later in [11]. We refer to
[1] for vortex dynamics under the Neumann boundary conditions or pinning conditions,
In the 3-dimensional case, § = 1, a similar dynamical law was also established in [1] for
nearly paralled filaments. The short-time dynamical law for codimension 2 interfaces
in higher dimensions was shown in [1]. When g8 # 1, in the 2-dimensional case, the
dynamical law was established in [12] under the first boundary condition. But, here
one proves only that u. conveges weakly to the limit function in H li-.: as £ — 0F,
- The main goal of the present paper is to examine the vortex dynamics without
topological constraints, and proves that u, converges strongly to the limit function in
B}, as ¢ - 0%,

To understand the behavior of u of (1.1)-(1.3) as t — oo, one has to look at steady
state solutions wu,., that is, the minimizer of the energy functional

B = [, [V + 536" - ]

A complete characterizaton of asymptotic behavier (as € — 07) of vortices of u. is
given in the recent work [2].

Now we claim our main theorem.

Theorem 1.1 Assume that 8 € C3(Q) and By = mﬁiu B(x) > 0. Under the

assumptions (1.4)-(1.6), one has, for any 0 < ¢ < T, that
ue (2, ) — wa(z, t) (1.7)

strongly in HL (Q2x[0, T\ {(a;(t).t) : t€ [0,7],i =1,2,-, m}). Here the convergence is
understood in the sense thal for any sequence of &' going to zero, there is a subsequence




