ASYMPTOTICS OF THE MODULE OF MINIMIZERS TO A GINZBURG-LANDAU TYPE FUNCTIONAL

Lei Yutian (Math. Depart., Suzhou University, Suzhou 215006, China) (Received Apr. 9, 2000)

Abstract The author proves that the module of minimizers for a Ginzburg-Landau type functional converges to 1. And the estimates on the convergent rate are also presented.

Key Words Ginzburg-Landau type functional; module of the minimizers; the rate of convergence.

1991 MR Subject Classification 35J70. Chinese Library Classification 0175.2.

1. Introduction

Let $G \subset R^n (n \geq 2)$ be a bounded and simply connected domain with smooth boundary ∂G . g be a smooth map from ∂G into S^{n-1} satisfying $W_g^{1,p}(G,S^{n-1}) \neq \emptyset$, where $W_g^{1,p}(G,S^{n-1}) = \{v \in W^{1,p}(G,S^{n-1}); v | \partial G = g\}$. Consider the Ginzburg-Landau-type functional

$$E_{\varepsilon}(u,G) = \frac{1}{p} \int_{G} |\nabla u|^{p} + \frac{1}{4\varepsilon^{p}} \int_{G} (1 - |u|^{2})^{2}, \quad p \ge 2$$

which has been well-studied in [1,2] for p = n = 2. For other related papers, we refer to [3-5].

The functional of the form $E_{\varepsilon}(u,G)$ was introduced in the study of superconductivity. Similar models are also used in superfluids and XY-magnetism. The minimizer u_{ε} of $E_{\varepsilon}(u,G)$ represents a complex order parameter and $|u_{\varepsilon}|$ has physics senses, for example, in superconductivity, $|u_{\varepsilon}|^2$ is proportional to the density of supercoducting electrons (i.e., $|u_{\varepsilon}| = 1$ corresponds to the superconducting state and $|u_{\varepsilon}| = 0$ corresponds to the normal state). In superfluids, $|u_{\varepsilon}|^2$ is proportional to the density of superfluid. Thus it is interesting to study the asymptotic behavior of $|u_{\varepsilon}|$ as $\varepsilon \to 0$.

Clearly the functional $E_{\varepsilon}(u, G)$ achieves its minimum on $W = \{v \in W^{1,p}(G, \mathbb{R}^n); v | \partial G = g\}$ by a function u_{ε} and there exists a subsequence u_{ε_k} of u_{ε} such that

$$\lim_{\varepsilon_k \to 0} u_{\varepsilon_k} = u_p, \quad \text{in } W^{1,p}(G, \mathbb{R}^n)$$
(1.1)

where u_p is a map of least p-energy with boundary value g. It is not difficult to prove that the minimizers u_{ϵ} solve the following Euler equation

$$-\operatorname{div}(|\nabla u|^{p-2}\nabla u) = \frac{1}{\varepsilon^p}u(1-|u|^2) \tag{1.2}$$

in the weak sense, and they also satisfy the maximum principle: $|u_{\varepsilon}| \leq 1$ a.e. on G.

The general minimizers and one class of them which is named the regularizable minimizers, will be both concerned with in this paper. It is not obvious that $|u_{\varepsilon}|$, the module of the minimizer of $E_{\varepsilon}(u,G)$, converges to 1 in $C_{loc}(G,R^n)$ when p=n, which is clear as p>n because of (1.1) and the embedding inequality. We shall assert it in Section 2. In the case p>n, the rate of convergence for $\nabla |u_{\varepsilon}|$ will be given in Section 3. Section 4, we shall introduce the regularizable minimizers \tilde{u}_{ε} . The estimates of their convergent rate which are better than that of general minimizers will be presented in Section 5.

2. C_{loc} Convergence for $|u_{\varepsilon}|$

From (1.1) and the embedding theorem we can say there exists a subsequence u_{ε_k} of u_{ε} such that $\lim_{k\to\infty} |u_{\varepsilon_k}| = 1$ in $C(\bar{G}, R^n)$ when p > n. Since the limit 1 is unique, we obtain

$$\lim_{\varepsilon \to 0} |u_{\varepsilon}| = 1, \quad \text{in } C(\bar{G}, R^n)$$
(2.1)

We always assume p = n in this section. We shall prove the weaker conclusion in this case:

Theorem 2.1

$$\lim_{\varepsilon \to 0} |u_{\varepsilon}| = 1$$
, in $C_{loc}(G, \mathbb{R}^n)$.

For this purpose, we prove the following proposition at first.

Proposition 2.2 Assume $u \in W$ is a weak solution of (1.2). For any $\rho > 0$, denote $G^{\varepsilon \rho} = \{x \in G; \operatorname{dist}(x, \partial G) > \varepsilon \rho\}$, then there exists a constant $C = C(\rho)$ independent of ε such that

$$\|\nabla u\|_{L^{\infty}B(x,\epsilon\rho/8)} \le C\varepsilon^{-1}, \quad x \in G^{\epsilon\rho}$$
 (2.2)

Proof Let $y = x\varepsilon^{-1}$ in (1.2) and denote $v(y) = u(x), G_{\varepsilon} = \{y = x\varepsilon^{-1}; x \in G\}, G^{\rho} = \{y \in G_{\varepsilon}, \operatorname{dist}(y, \partial G_{\varepsilon}) > \rho\}$. Since u is a weak solution, we have

$$\int_{G_{\varepsilon}} |\nabla v|^{p-2} \nabla v \nabla \phi = \int_{G_{\varepsilon}} v(1-|v|^2) \phi, \quad \phi \in W_0^{1,p}(G_{\varepsilon}, \mathbb{R}^n)$$

Taking $\phi = v\zeta^p, \zeta \in C_0^{\infty}(G_{\varepsilon}, R)$, we obtain

$$\int_{G_{\epsilon}} |\nabla v|^p \zeta^p \le p \int_{G_{\epsilon}} |\nabla v|^{p-1} \zeta^{p-1} |\nabla \zeta| |v| + \int_{G_{\epsilon}} |v|^2 (1-|v|^2) \zeta^p$$