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1. Introduction

Let & € R"(n = 2) be a bounded and simply connected domain with smooth
boundary 8G. g be a smooth map from 8¢ into S™! satisfying W;P{G,S”“] #
. where W}HG,S“‘W = {v € wle(G, 57 1);vlac = g}. Consider the Ginzburg-
Landau-type functional
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which has been well-studied in [1,2] for p=n = 9. For other related papers, we refer
to [3-5].

The functional of the form E.(u, () was introduced in the study of superconduc-
tivity. Similar models are also used in superfluids and XY-magnetism. The minimizer
ue of E:(u,G) represents a complex order parameter and |u.| has physics senses, for
example, in superconductivity, |uEF is proportional to the density of supercoducting
electrons (Le., |ue] =1 corresponds to the Euperturiﬂucting state and |ug| = 0 cor-
responds to the normal state). In superfluids, |u|? is proportional to the density of
superfluid. Thus it is interesting to study the asymptotic behavior of |ug] as € — 0.

Clearly the functional E(u, G) achieves 1ts minimum on W = {v € WHP(G, R"); vlsc
= ¢} by a function u. and there exists a subsequence u., of u. such that

lirl:nm-i-.nEJ=I = Uy, N WP (G, R") (1.1)
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where u, is a map of least p-energy with boundary value g. It is not difficult to prove
that the minimizers u. solve the following Euler equation

~div (|Vulf*Vu) = Eipu[i — |u|?) (1.2)

in the weak sense, and they also satisfy the maximum principle: |u,| <1 a.e. on G.

The general minimizers and one class of them which is named the regularizable
minimizers, will be both concerned with in this paper. It is not obvious that |u,|, the
module of the minimizer of E,(u, @), converges to 1 in C),.(G, ") when p = n, which
is clear as p > n because of (1.1) and the embedding inequality. We shall assert it in
Section 2. In the case p > n, the rate of convergence for V|u.| will be given in Section
3. Section 4, we shall introduce the regularizable minimizers .. The estimates of their
convergent rate which are better than that of general minimizers will be presented in
Section 5.

2. Choc Convergence for |u,|

From (1.1) and the embedding theorem we can say there exists a subsequence wu,,
of u, such that L]:ljn e, | =1 in C(G, R*) when p > n. Since the Limit 1 is unique, we
obtain &

gi_r::l]]u5| =1, inC(G,R™) (2.1)

We always assume p = n in this section. We shall prove the weaker conclusion in this
Case:
Theorem 2.1
gl_lﬁl] luel =1, in Gl (G, B™).

For this purpose, we prove the following proposition at first.

Proposition 2.2 Assume v € W is a¢ weak solution of (1.2). For any p > 0,
denote G*¢ = {z € G,;dist(z,8G) > ep}, then there exists a constant C — Cl(p)
independent of € such that

H?ﬂ"LMH{I;”E} <Ce™l, zege (2.2)

Proof TLet y = ze™! in (1.2) and denote v(y) = w(z),G. = {y = 2}z €
G},G* = {y € G, dist(y, dG:) > p}. Since u is a weak solution, we have

L, 1o 290vs = [ ot e, 6 e i G, m)
Taking ¢ = v(?,( € C’E“{GE,R}, we obtain
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