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DETERMINATION OF A PARAMETER h(t) FOR A PHASE
FIELD MODEL
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Abstract A phase field model with an unknown parameter h{t) is considered.
The existence, uniqueness and continuous dependence upon the data of the solution
(1, i, k) are demonstrated.
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1. Introduction

In this paper we will consider the following inverse problem: we wish to find the
evolution parameter A(t) and the functions u(z,t), ¢(x, f), such that

1wy + kioy = Au 4+ k(1) flz, 1), (x,t) € ¢ (1.1)
wr = Ap + alz, e + bz, D’ — ¢® +utglet), (zi) el (1.2)
u(z,0) = ug(z), lz,0) = @o(z), xr € (1.3)
fg=p=10, (z,f) €S (1.4)
_/;}H{z,t]u{m}t}d:n = B() 0<t<T (1.5)

where @ = 2 % (0,T], § = 82 x (0,T], and  is an open bounded domain in R* with
boundary 90 € €%, T > 0 and & > 0 are given constants, a, b, f. g, ug, o, H, and E
are given functions.

It is well known that G. Caginalp proposed the system of phase field equations in
[1]. The phase field model represents a refinement of the classical Stefan maodel for the
transition between the solid and liquid phases of a material. The authors of [1], [2]
proved the global existence of solutions to the phase field equations with Dirichlet or
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Neumann boundary conditions. The optimal control problem for a phase field model
has been studied in [3].

The problem (1.1)-—(1.5) can be regarded as a control problem with source control
for a phase field model. Here we study the identification of the control hit) neces-
sary to produce the specified or desired energy E(t). The aim of this article is to
investigate the existence, uniqueness and dependence upon the data of the solution
(w, ¢, k) € Wﬁ*‘{Q] b W,f'l{Q] % Ly(0,T) for the problem (1.1)—(1.5), where P, are
given constants and satisfy

p=2
and X
. 2
pEgsp = P forp e [12)
0
bR A e e for pe [-E-,+m)

It is convenient here to list our assumptions on data.

(H1) a(z,t),b(z,t) € La(Q),

(H2) f(z,%) € Loo(0, T; Lo(8Y)), g(z,t) € Lo (Q);

(H3) uo(z) € Wy *(2) N W), vo(z) € WE27(0) nW(9),

(Hd) H{x,t) € CBHL(Q), f H(x,t)f(x,t)dz > op, and constant ag > 0,
| 0

(H5) E(t) € W}(0,T) and E(0) = f Hz, Ohug(2)dz.
Thmughaut the standard space notations, such as C*(Q), Lp(Q), WEH(Q), Wk (),
Wp (§2), L,(0, T, and W‘{D T} (see [4]) are used, and the space

Loo(0,T; Lp(€)) = {£ | 1 ()l L,(e) € Leo(0, T}

Now let (u,, k) € WI(Q) x W2HQ) x L,(0,T) be a solution for (1.1)—(1.5). It
is not difficult to show that our assumptions imply

E'(t) = f (Hyu + Huy)dz
1
= f (Hyw — g H 7w — kHep,)dz +f ﬂ-@dﬂ' + h(t) f H fdx (1.6)
¥ o On )
where % is the outer normal derivative, and

?'LI} o (u:[‘-i‘rum-g: u‘ﬂ}a]? ?H = '[th 1 rIII—:!T.'.".'” H :I

On the assumption that (H4) allows us to solve for A(t) € Ly(0,T) in (1.6) explicitly

ht) = ( fn Hfd:x:) _E(E’{t} + j;; (EH oy — ul, + 9H v u)dc — f& ) H%dﬂ) (1.7)




