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NUMERICAL ANALYSIS OF A FINITE ELEMENT,

CRANK-NICOLSON DISCRETIZATION FOR MHD FLOWS AT

SMALL MAGNETIC REYNOLDS NUMBERS

GAMZE YUKSEL AND ROSS INGRAM

Abstract. We consider the finite element method for time dependent MHD flow at small magnetic

Reynolds number. We make a second (and common) simplification in the model by assuming the

time scales of the electrical and magnetic components are such that the electrical field responds
instantaneously to changes in the fluid motion. This report gives a comprehensive error analysis

for both the semi-discrete and a fully-discrete approximation. Finally, the effectiveness of the

method is illustrated in several numeral experiments.
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1. Introduction

Magnetohydrodynamics (MHD) is the theory of macroscopic interaction of elec-
trically conducting fluid and electromagnetic fields. Many interesting MHD-flows
involve a viscous, incompressible, electrically conducting fluid that interacts with
an electromagnetic field. The governing equations for these MHD flows are the
Navier-Stokes (NS) equations (NSE) coupled with the pre-Maxwell equations (via
the Lorentz force and Ohm’s Law). The resulting system of equations (see e.g.
Chapter 2 in [21]) often requires an unrealistic amount of computing power and
storage to properly resolve the flow details. A simplification of the usual MHD
equations can be made by noting that most terrestrial applications involve small
Rm; e.g. most industrial flows involving liquid metal have Rm < 10−2. Moreover, it
is customary to solve a quasi-static approximation when an external magnetic field
is present Rm is small since the time scale of the fluid velocity is much shorter than
that of the electromagnetic field [3]. We provide herein a stability and convergence
analysis of a fully discrete finite element (FE) discretization for time-dependent
MHD flow at a small Rem and under a quasi-static approximation. Magnetic
damping of jets, vortices, and turbulence are several applications, [3, 18,20,22].

Let Ω be an open, regular domain in Rd (d = 2 or 3). Let Rm = UL/η > 0
where U , L are the characteristic speed and length of the problem, η > 0 is the
magnetic diffusivity. The dimensionless quasi-static MHD model is given by: Given
time T > 0, body force f , interaction parameter N > 0, Hartmann number M > 0,
and domain ΩT := (0, T ] × Ω, find velocity u : ΩT → Rd, pressure p : ΩT → R,
electric current density j : ΩT → Rd, magnetic field B : ΩT → Rd, and electric
potential φ : ΩT → R satisfying:

(1)
N−1 (ut + u · ∇u) = f +M−2∆u−∇p+ j×B, ∇ · u = 0
−∇φ+ u×B = j, ∇ · j = 0

∇×B = Rmj, ∇ ·B = 0

Received by the editors October 8, 2010 and, in revised form, December 6, 2011.
This work was partially supported by National Science Foundation Grant Division of Mathematical
Sciences 080385.

74



FECN ANALYSIS OF SMALL Rm FLOWS 75

subject to boundary and initial conditions

(2)
u(x, t) = 0, ∀(x, t) ∈ ∂Ω× (0, T ]
φ(x, t) = 0, ∀(x, t) ∈ ∂Ω× (0, T ]
u(x, 0) = u0(x), ∀x ∈ Ω

where u0 ∈ V and ∇ · u0 = 0. When Rm << 1, then j and ∇ × B in (1)(3a)
decouple. Suppose further that B is an applied (and known) magnetic field. Then
(1) reduces to the simplified MHD (SMHD) system studied herein: Find u, p, φ
satisfying

(3)
N−1 (ut + u · ∇u) = f +M−2∆u−∇p+ B×∇φ+ (u×B)×B

∇ · u = 0
−∆φ+∇ · (u×B) = 0.

subject to (2). This is the time dependent version of the model first proposed by
Peterson [19].

We provide a brief overview of previous applications and analyses of MHD flows
(high and low Rm) in Section 1.1. In Section 2, we present notation and a weak
formulation of (3) required in our stability and convergence analysis. In this report
we prove stability estimates for any solution u, p, φ to a semi-discrete and fully
discrete approximation of (3) in Propositions 3.2, 4.2 respectively. We use these
estimates to prove optimal error estimates in two steps:

• Semi-discrete (FE in space), Section 3
• Fully-discrete (FE in space, Crank-Nicolson time-stepping), Section 4

Let h > 0 and ∆t > 0 be a representative measure of the spatial and time dis-
cretization. We investigate the interplay between spatial and time-stepping errors.
We prove that the method is unconditionally stable and, for small enough ∆t, the
errors satisfy

error(u, p, φ) < O(hr + ∆t2)→ 0, as h,∆t→ 0

where r is the order of the FE approximation. See Theorems 3.3, 4.3 and Corollaries
3.4, 4.5.

1.1. Overview of MHD models. Applications of the MHD equations arise in
astronomy and geophysics as well as numerous engineering problems including liq-
uid metal cooling of nuclear reactors [2, 7], electromagnetic casting of metals [16],
controlled thermonuclear fusion and plasma confinement [8, 23], climate change
forecasting and sea water propulsion [15]. Theoretical analysis and mathematical
modeling of the MHD equations can be found in [3, 10]. Existence of solutions to
the continuous and a discrete MHD problem without conditions on the boundary
data of u is derived in [24]. Existence and uniqueness of weak solutions to the
equilibrium MHD equations is proven by Gunzburger, Meir, and Peterson in [6].
Meir and Schmidt provide an optimal convergence estimate of a FE discretization
of the equilibrium MHD equations in [17]. To the best of our knowledge, the first
rigorous numerical analysis of MHD problems was conducted by Peterson [19] by
considering a small Rm, steady-state, incompressible, electrically conducting fluid
flow subjected to an undisturbed external magnetic field. Further developments
can be found in [1, 12,13].


