## A REMARK ABOUT HYPERBOLIC EQUATIONS WITH LOG-LIPSCHITZ COEFFICIENTS

## Massino Cicognani

(Università di Ferrara, Dipartimento di Matematica, Via Machiavelli 35, 44100 Ferrara, Italy, e-mail:cic@dns. unife.it) (Received Sept. 29, 1996)

Abstract We prove the well-posedness of the Cauchy problem for strictly hyperbolic equations and systems with Log-Lipschitz coefficients in the time variable.

Key Words Strictly hyperbolic equations; non regular coefficients.

Classification 35L30.

## 1. Introduction

In [1] Colombini and Lerner proved the well-posedness in  $C^{\infty}$  of the Cauchy problem for strictly hyperbolic second order operators whose coefficients are "Log-Lipschitz" in the time variable  $t, C^{\infty}$  in the space variables x. The purpose of this short paper is to extend this result to operators of higher order and to systems.

A function  $\alpha$  of the variable t is said to be Log-Lipschitz if it satisfies

$$|\alpha(t_1) - \alpha(t_2)| \le C|t_1 - t_2| |\log|t_1 - t_2||$$

for small  $|t_1 - t_2|$ .

For P an operator of order  $d \geq 2$ , Theorem 3 below gives the energy estimate.

$$\sum_{j < d} \| \partial_t^j u(t) \|_{H^{m-j+d-1-\beta t}} \leq C_m \bigg( \sum_{j < d} \| \partial_t^j u(0) \|_{H^{m-j+d-1}} + \int_0^t \| Pu(s) \|_{H^{m-\beta s}} ds \bigg)$$

with  $\beta > 0$ ,  $0 \le t \le 1/\beta$ . When d = 2, this result is the same as that of Theorem 2.2 and Theorem 2.3 in [1].

Since we use elementary arguments our proof is very easy but it does not work for isotropically Log-Lipschitz coefficients (i.e. with respect to all variables). So we are not able to extend either Theorem 2.1 in [1] by means of the technique of this paper.

When the coefficients satisfy an inequality of the type

$$|\alpha(t_1, x) - \alpha(t_2, x)| \le C|t_1 - t_2||\phi(|t_1 - t_2|)|$$
, with  $|\phi(r)| \to +\infty$  as  $r \to 0^+$ 

a formal use of our method suggests the well-posedness of the Cauchy problem in the spaces

$$H_{\phi}^{m} = \{u; (\exp|\phi(1/D_{x})|)u \in H^{m}\}$$

giving a heuristic explanation of the following results:

- i) The Log-Lipschitz regularity is a natural threshold beyond which the well-posedness in  $C^{\infty}$  could not be expected. An effective counterexample is given in [1];
- ii) For  $C^{0,k}$  coefficients, 0 < k < 1, (i.e. for  $\phi(r) = r^{k-1}$ ) the Cauchy problem is well-posed in the Gevrey classes  $G^{(\sigma)}$ ,  $\sigma < 1/(1-k)$ . We refer to [2] for a precise use of our method in this situation. There we re-obtain and extend some results of  $G^{(\sigma)}$  well-posedness proved by Colombini, De Giorgi and Spagnolo in [3], by Jannelli in [4] and by Nishitani in [5].

## 2. Statement and Proof of the Result

In this paper it is convenient to set  $\langle \xi \rangle = (2 + |\xi|^2)^{1/2}$  instead of the usual  $\langle \xi \rangle = (1 + |\xi|^2)^{1/2}$  in order to have  $\log \langle \xi \rangle$  greater than a positive constant,  $\xi \in \mathbf{R}^n$ .

**Definition 1** Let p be a function in  $C(0,T;S^m)$ . We set

$$\begin{split} \|p_{(\beta)}^{(\alpha)}\|_{LL} &= \sup_{\substack{t \in [0,T] \\ x,\xi \in \mathbf{R}^n}} \langle \xi \rangle^{|\alpha|-m} |\partial_{\xi}^{\alpha} \partial_{x}^{\beta} p(t,x,\xi)| \\ &+ \sup_{\substack{0 < |s-t| < 1/2 \\ x,\xi \in \mathbf{R}^n}} \frac{\langle \xi \rangle^{|\alpha|-m} |\partial_{\xi}^{\alpha} \partial_{x}^{\beta} p(s,x,\xi) - \partial_{\xi}^{\alpha} \partial_{x}^{\beta} p(t,x,\xi)|}{|t-s||\log|t-s||} \end{split} \tag{1}$$

We define the set  $LL(0,T;S^m)$  of Log-Lipschitz functions from [0,T] to  $S^m$  as the space of functions p such that  $\|p_{(\beta)}^{(\alpha)}\|_{LL} < +\infty$  for every  $\alpha,\beta$ .

Let us consider a first order system in  $[0, T] \times \mathbb{R}^n$ 

$$L = \partial_t - K(t, x, D_x) \tag{2}$$

where the matrix  $K \in C(0, T; OPS^1)$  is such that

$$L$$
 is strictly hyperbolic (3)

$$K$$
 has principal symbol  $K_0 \in LL(0,T;OPS^1)$  (4)