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Abstract In this paper, we first introduce the irreducible unitary representation of
nilpotent Lie groups, then by using the irreducible unitary representation we construct
& fondamental solution to a class of left invariant differential operators and thus obtain
the global solvability of this kind of operators.
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1. Introduction

It is well-known that there is a lot of works devoted to the study of left invariant
operators on nilpotent Lie groups. But the principal part of the -Dpl:r.‘ﬁ.tDI'E.iS always
assumed to be elliptic in the generating direction, and some other strong conditions
must be added for the operator in order to solve it locally or globally [1-5]. In this
paper, by using the complexified irreducible unitary representation we obtain the global
solvability for a class of left invariant differential operators, which are not necessarily

elliptic in the generating direction.

9 Plancherel Formula and Complexified Representation
Consider Lie group G, whose Lie algebra I admits the following decomposition
Li=1y + Lo

Let {X1,-++,Xn} and {¥7,:-" .Y} be the bases of L1 and La, respectively. Assume
that for each n € RF Y\ {0}, there exists on L) an antisymmetric bilinear form' B,
satisfying the following condition

(H) ¥n € R*\ {0}, we also denote by By the n x n matrix (bij) = (Ba[Xi: X;]).
Suppose that the rank of the kernel of By is of constant d.
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From the assumption we know that n = d + 2m, where d, m € N = {0,1,2,--.}
and for 7 # 0 fixed there exists an orthogonal transform Ty such that T, changes
{X1, o, Xabinto {R:;, U, Vi i=1, - dij=1-""m with the following relations

By[R:, U] = By|Ui, Us] = BylW;, Vi) = BylRi, V] = Bp|Ri, R;] = 0
B [U;, V] = 8iips ()

where &p;(p; > 0) are the nonzero eigenvalues of 1 B,,.
In fact, Lie algebra L of G is isomorphic to the algebra generated by the following
vector fields

(2.1)

k
[:{{,Xj] = EAE;}}E1 ?'JJ-" =1,2,:-,n
=]

where A = {A ] are antisymmetric n x n matrices. By Campbell-Hausdorff formula,
we know that under the exponential coordinates X;, Y¥; can be written as

i1t (e i,
X 7. Z;’i X@y T i S|
4
d
Vi p=digi B
ST

And {X;},{Y;} generate Ly, Lq, respectively. The matrix B, can be obtained in the
following way: for n € Lj (dual of L3), define on L; x L; an antisymmetric bilinear
form B,

B[ X, X' = n([X,X']) for (X,X") € L; x L,

If  in L takes the coordinate (n,---,m), then the matrix of B, under {X;} (also
denoted by By) is

k
= E A{E}Th

In what follows we derive the lrrcduclble 111111:31‘3,' representation and its complexifi-

cation,
Considering £ € R? as the element of the dual of Span {Ry, -, Rg} we can define

the irreducible unitary representation of G' on L*(R™) as follows

k
ﬂfﬂ(exp(ZTth + E will; + v V) + Zy;ﬁ))f(s]
i=1

=]

= exp|i(yn + r&) +1i Z ujpiui +1 3 ﬁjﬁj] fls +/pu) (2.2)
i=1 b

where s + ,/pu = (51 + /Pru1, "+ Sm + /Pmltm ). Define

() = fG o(g)n(g~")dg  (2.3)




