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Abstract By an involved approach a geometric measure theory is established for
parabolic Monge- Ampeéere operator acting on convex-monotone functions, the theory
bears complete analogy with Aleksandrov's classical ones for elliptic Monge-Ampére
operator acting on convex functions. The identity of solutions in weak and viscosity
sense to parabolic Monge- Ampere equation is proved. A general result on existence and
uniqueness of weak solution to BVI* for this equation is also obtained.

Key Words  geometric measure theory; parabolic Monge-Ampére operator; weak
(or generalized) and viscosity solution,

Classifications  35K20; 35K55; 35Q99.

0. Introduction

In this paper we give a full exposition of the results announced in [1] and [2],
concerning the parabolic type Monge-Ampere operator acting on continuous functions
u(z,t), which are convex in x € & C R™ and non-increasing in ¢ € (0, 7], with Q being
a convex domain. These objects were introduced by N.V.Krylov in [3], and since then
have become basic tools in the study of parabolic equations.

Firstly we shall show that it is possible to establish a geometric measure theory in
the present time dependent context bearing complete analogy with the Aleksandrov's
classical ones for elliptic Monge-Ampére operator acting on the usual convex functions
in Section 1. The starting point is that, as it was hinted in Tso's work [4], the proper
substitute needed here, for the basic notion of normal image in Aleksandrov’s con-
struction, happens to be the set valued mapping, which will be called the Legendre
transformation £ generated by w(x,t):

L:(y,7)eQ:=0x(0,T]— (p,h) e " x R (0.1)
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with
p€ Vuly, ) h=p-y—ulyr1) (0.2)

where Vu(y,7) denotes the sub-gradient of the convex function u(-, r) at y. Geomet-
rically, (0.2) means that z = p-x — h is one of the supporting planes to the graph of
u(-,7) passing through the point (y, u(y, 7).

Secondly we shall show that, for strictly positive functions f(x,t) € C(Q), a function
ulz,t) € C(Q), convex in r and non-increasing in ¢, is a solution of the parabolic
Monge-Ampére equation

—ug(z, t) det[Diu(z, t)] = f(z,#) inQ (0.3)

understood in the above mentioned Aleksandrov's measure theoretical like weak sense,
if and only if it is a solution in viscosity sense in Section 2. A result of this kind for
elliptic Monge-Ampére equation was proved by Caffarelli in [5].

By the way we shall discuss the first BVP

{ —ulx, t) det[Diu(z,t)] = f(z,t) in @ (0.4
u(x, t) = ¢(x,t) on 3,Q

Suppose {2 is a C? bounded convex domain, f € C(Q), f(x, 1) > 0 ¥(z, 1) € Q, $(x, t)
is a continuous function defined in a neighborhood of € and is convex in x and non-
increasing in t. Then based on [1] we prove that there exists a unique weak solution to
the first BVP (0.4).

The precise statements of the above mentioned resulis are the following two theo-
rems.

Theorem A i) Foru(z,t) € C(Q), conver in x and non-increasing in t, consider
the Legendre transformation £ generated by w(x, t) as defined by (0.1) and (0.2). Despite
that £ is a set-valued mapping in general, the set function by associating any Borel set
§ C @ to the (n + 1)-dimenstonal Lebesgue measure of £(S) is a Radon measure, w,,
on ).

ii) As it has been proved by N.V.Krylov that, for the function u(z,t) as described
in i) it holds, for almost all (z,t) € @, that

wlx+ iyt + 1) = ulz, £) + wlz, )7 + Voulz, t) -y

Pn
+5D3u(z,thy -y +ollyl® + |7)  as lyl2+7 -0,

where D2u(z, f) actually denotes the Radon-Nikodym derivatives of the measures Uiz, (7 1)
with respect to Lebesgue measure. Moreover the Radon-Nikedym derivative of w, is
equal to

—ug(2, 1) det[D2u(x, £)], a.e on

iii) Let u;(x,t) € C(Q) be conver in r and non-increasing in t, wy; be the measure
associated with it as defined in 1). For the function u(x,t) and the measure w, as stated



