A NOTE ON PRESCRIBED GAUSSIAN CURVATURE ON S² *

Hong Chongwei
Institute of Mathematics, Academia Sinica
Received June 11, 1987

1. Introduction and Main Results

Given $R(x) \in C^2(S^2)$ where $S^2 = \{x \in R^3 \mid |x| = 1\}$, we want to find a condition on R(x) so that there exists a metric g on S^2 with scalar curvature (i. e. twice the Gaussian curvature) R(x), which is pointwise conformal to the standard metric g_0 , so $g = e^*g_0$ for some function u.

This problem is equivalent to the existence of a solution of Eq. (cf. [1]) $\Delta u(x) - 2 + R(x) e^{x(x)} = 0 \qquad x \in S^2$ (1.1)

where we use the sign convention for Laplacian Δ so that $\Delta u = u_{xx} + u_{yy}$ on flat A^2 .

For known results of this interesting problem, confer (1) - (13). In this paper we prove

Theorem 1. 1. Assume that $R(x) \in C^2(S^2)$ satisfies

- i) \exists a curve $\Gamma \in C((0, 1), S^2)$, $\Gamma(0) = a \neq b = \Gamma(1)$, $0 < R(b) \le R(a)$, $b \in S^2$ is a nondegenerate local maximum point of R(x).
- ii) $\min_{x \in \Gamma} R(x) = m < R(b)$ and $\forall x \in \Gamma \cap R^{-1}(m)$ either $\nabla R(x) \neq \vec{0}$ or $\nabla R(x) = \vec{0}$. $\Delta R(x) > 0$.
- iii) There is no critical point of R(x) on $R^{-1}(m, R(b))$ except a finite number of nondegenerate local maximum points.

Then Eq. (1. 1) has a solution.

Remark 1. 1. If $\min_{x \in \Gamma} R(x) \le 0$, assumption ii) can be omitted and assume iii) on $R^{-1}(0, R(b))$, then Theorem 1. 1 remains true.

Remark 1. 2. Notice that Theorem 1. 1 permits $R(b) < R(a) < \max_{x \in S^2} R(x)$, $a \in S^2$

need not be a critical point of R(x), R(x) can be arbitrary on $S^2 \setminus a$ neighborhood of Γ provided iii) holds.

To solve Eq. (1.1), we look for a critical point of

$$J(u) \triangleq \frac{1}{2} \int_{S^2} |\nabla u|^2 + 2 \int_{S^2} u - 8\pi \log \int_{S^2} Re^u \triangleq I(u) - 8\pi \log \int_{S^2} Re^u$$

defined on $H riangleq \{u \in H^1(S^2) \mid \int_{S^2} Re^u > 0\}$. If $J'(u_0) = 0$, then $u = u_0 +$ some constant C is a solution of Eq. (1.1).

Set $B_r riangleq \{x \in R^3 \mid |x| < r\}$ and $B_1 riangleq B$. Define $P(u) riangleq \int_{S^2} x e^u / \int_{S^2} e^u \in B$, $\forall u \in H^1(S^2)$. Throughout this paper we assume $R(x) \in C^2(S^2)$. It is worth while noticing the function $m(x) riangleq \inf_{u \in H, P(u) = x} J(u)$, $x \in B$. In section 2 we prove:

^{*} The project supported by National Natural Science Foundation of China

Lemma 2.1. If R(x) > 0, $\forall x \in S^2$, then $m(x) \in C(\overline{B}) \cap C^{1-0}(B)$ and $m(x) = -8\pi\log(4\pi R(x))$, $\forall x \in S^2$.

In section 3 we prove the following inequality:

Lemma 3. 1. Suppose that $b \in S^2$ is a nondegenerate local maximum point of R(x), R(b) > 0, then there exists $\delta > 0$ depending on R such that $\forall \ 0 < \epsilon \le \delta$, $\exists \ 0 < \mu = \mu(R, \delta, \epsilon) < 4\pi$ so that the following inequality holds:

 $\int_{S^2} R(x) e^{u(x)} \le \mu R(b) \exp\left(\frac{1}{16\pi} \int_{S^2} |\nabla u|^2 + \frac{1}{4\pi} \int_{S^2} u\right),$ $\forall u \in H^1(S^2) \quad \text{with} \quad e \le |P(u) - b| \le \delta$ (1.2)

In section 4 we prove Theorem 1.1 using Lemma 2.1, 3.1 and minimax argument on H.

2. Function m(x) on Unit Ball \overline{B}

In what follows we denote various constants by the same C. Set

$$\varphi_{\lambda y}(x) = \log \frac{1 - \lambda^2}{\left(1 - \lambda \cos d(x, y)\right)^2} \qquad x, y \in S^2, \quad 0 \le \lambda < 1$$

where d(x, y) is the distance on (S^2, g_0) between two points x, y, then (cf. [6]) $u(x) = \varphi_{\lambda y}(x)$ satisfies Eq. (1.1) with R(x) = 2.

$$\int_{S^2} \exp\left(\varphi_{\lambda y}(x)\right) = 4\pi, \qquad I\left(\varphi_{\lambda y}(x)\right) = 0 \qquad (2.1)$$

Direct computation shows

$$P(\varphi_{\lambda y}) = C(\lambda) y \in B, C(\lambda) = \frac{1}{\lambda} + \frac{1}{2} \left(\frac{1}{\lambda^2} - 1\right) \log \frac{1 - \lambda}{1 + \lambda}$$
 (2.2)

and there is a homeomorphism $h: B \to B: \forall \lambda y \in B$, $(\lambda, y) \in [0, 1) \times S^2$, $h(\lambda y) \triangleq P(\omega, y)$.

Proof of Lemma 2. 1. 1° J(u) is bounded below (cf. [10]) and J(u) = J(u+C) $\forall u \in H^1(S^2)$, $C \in \mathbb{R}$. For fixed $x_0 \in B$ choose a minimizing sequence $\{u_i\} \subset H$,

$$\int_{S^2} u_i = 0$$
 , $P(u_i) = x_0$, $J(u_i) \rightarrow m(x_0)$. By Aubin (2 Theorem 6), we have

$$\int_{\mathcal{S}^2} e^{u_i} \le C \exp\left(\frac{1}{24\pi} \int_{\mathcal{S}^2} |\nabla u_i|^2\right) \tag{2.3}$$

C is independent of i. From (2.3) and $J(u_i) \leq C$ we derive $\|u_i\|_{H^1} \leq C$. We can extract a subsequence, still denoted by $\{u_i\}$, such that $u_i \rightharpoonup u_0$ ($H^1(S^2)$). Since $u \in H^1: u \rightharpoonup e^u \in L^1$ is compact (cf. [1 Theorem 2.46]) and J is weakly lower semicontinuous on H, we get $J(u_0) = m(x_0)$, $P(u_0) = x_0$, i. e. $\inf_{u \in H, P(u) = x_0} J(u) = x_0$

 $m(x_0)$ is attained by u_0 . 2° We prove that $m(x) \in C(B)$. Suppose that $J(u_i) = m(x_i)$, $P(u_i) = x_i \rightarrow x$ $\in B$, $\int_{S^2} u_i = 0$, using $\varphi_{\lambda_i}(x)$ it is easy to see that we can assume $J(u_i) \leq C$, again (2.3) holds, the same reasoning as in 1° shows $\lim_{x \to \infty} m(x_i) \geq m(x)$. On the other

hand, if
$$J\left(u_{0}\right)=m\left(x_{0}\right)$$
 , $P\left(u_{0}\right)=x_{0}$, set $P\left(u\right)=p=\left(p_{1},\;p_{2},\;p_{3}\right)$, by definition $\int_{\mathbb{S}^{2}}\left(x_{0}-x_{0}\right)\left$

-p) $e^u = 0$, using implicit function theorem we see that there exists a neighborhood U of u_0 in $H^1(S^2)$ such that (v, p) is a coordinate system of U, where v is some subspace of $H^1(S^2)$ with codimension 3. Noticing the continuity of J at $u_0 \in H$, we obtain $\overline{\lim}_{x_i \to x_0} m(x_i) \leq m(x_0)$, hence $m(x) \in C(B)$.