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Partial differential equations of mixed type has been a very active topic since
F. Tricomi' s pioneering work on the eguation
yu,, +u, =0 1)
which bears his name. This is mainly due to the significant role it plays in the theory of
transonic flow. It also appears in various fields, for instance in the theory of plasticity
and the theory of deformation of surfaces, just to name a few of them. There is another
type of partial differential equation of mixed type. M. Cibrario [17] considered the
general second order eguation

Alz, pu,+2B pu,+Clx 3w,

LDz Pu +E@ Pu,+Flz pu=10 (2)
where the coefficients are real analytic functions of real variables (z, y) and the
discriminant A (x, ¥) = B*— AC may change sign across the type-changing curve I't A
— 0 and is of mixed type there. She proved that eguation f1) can always be reduced to
either of the following forms

g™, tu, fals PYu, b Py, telz pu= 0 (3)
u, +y™ T, Fatz Pu, b Pu,telz Pu=0 (3
Thus, Tricomi’s equation is only the simplest model of (3,) where I’ is not characteristic.
Equations of the form (3,) is also of considerable interest. The earliest example is
u,, + yu,, +ou,=10 g = const. (4)
which has been studied by L P. Carol' [2]. Let & be a domain in (z, ¥ plane such that
gn {yg==0x=&. @=r,Ur,ur,risan arc lying in y == 0 with end point A
and B on y=0, I, and I'; are characteristics of (4) in y = 0 through A and B
respectively, When a<Z 0, Carol' proved that the Dirichlet problem (problem M) for
(4) is well-posed, while for o =0, boundary value can be assigned on I, (problem E).
Equations of the type (3, also appear in gas dynamies (for instance, conie flow)
[3] where we are required to solve the Busemann equation
(1l — 2w, — 2eyu,, + 11— ¥ u,, + 2azu, + 2ayu, —a (a+ 1)u=10 (5
The unit circle z*-- y*= 1 is the type-changing curve and also a characteristic curve
for the equation {5), which in polar coordinates can be written as

_ondu , 13du (l 1S )3_“ 3 i
(1 r)3?3+rfaﬂa+ " - 2ar = afa+ 1yu=10 (5
Near the type-changing curve r = 1., (b,) becomes asymptotically
2% % 1 3
"DE.?_;:-*+§£_ (?+a)ﬁ—afa+l)u.=ﬂ. p=1—r (5.0
1

Gu Chac-hao proved in [4] that the Dirichlet problem is well-posed when o =5, and

when a{% boundary value can be assigned only on that part of the boundary inside
the elliptic domain z* -+ y*=<1 .
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Equation of the type (3,) also appears in magneto-hydrodynamics, see Seebass [5]-
In this paper, we consider the second order linear equation

tee = YU, +alz. ¥ u, + bz Ny t+elx Pu=0, e=0 (6
(be. (3, with m=0) in a region Q=& Ug_ 9, =%0 {g=. =0} . We

assume a, b, ¢ are analytic functions of the real variables z and y . We also assume
hi{z, () =5b,= const. {7
Our main idea is that, anv solution of (6) is “glued up” from 2 solutions each in £ and
£ _ . The smoothness of the solution is determined by the constant b, in (7). Different
requirements on smoothness lead to corresponding boundary wvalue problem. More
precisely, our main results are: first, we prove that all solutions of (6) admit an

asymptotic expansion
wiz, ) ~ da. @y +y 2 b @y A=1—b (8)

L ]

near y = 0 (but y 3= () . Next, we prove that all solutions in &, or &_ can be extended
“analytically” into Q_ or & respectively. From these results we can give well-posed
boundary value problems.

Equation (8) is a Fuchsian type partial differential equation. From (8) it is seen
that y = 0 is a singularity of the solution, while for equation (3, there is no solution
with remarkable singularity on y = 0. This would help to explain the difference
between (3,) and (3, .

From the condition (7). we have

bix, ) =b,+ b, (z. ¥)
Introducing a new unknown function » (z. )

vz, y) =ulx. ¥)exp [% Ja {z, l])tix—i—é—yblii. ﬂ}]

equation (6) becomes an eguation inw(z, #) :
e+ ¥0,, 1+ [alz, ) —a(z, 0) — yby(z. O Je.,
; 1 bz, §) —ybi(z, Mo, +co=10
where T (z, ¥) is an analytic function in (z, y) near y = 0 . Since
atz, ) —alz, 0) —yd/ (x O =yalz. ¥
bz, ) —ub,(z O =b,+y[b (z. ) —bx, O]=b+y%:0 ¥
hence, without losing generality, we may assume that the coefficients of (6)
afz, ). bz, y) are of the form
alz, ¥)=vwa lz, ¥) 9
bz, ) =b+ ¢'h(z )
Using characteristic variables
g=z+2(—p71
p=z—2(—p7
(6) can be written as

F ) -l
ey — LﬁJr C—m4Q m jut
+LE—E_-¢_ (& — ) B ?;.:.Ju,,+r:cg. 7w =0 (10

with g’=f =— %4—&”: ﬂunst., A2 o, B(& » and C (4. ) analytic in &, near &

= 7.

In hyperbolic region £_ where y =0, £ g are real variables, while in elliptic
region &2, where y =0, &, 7 are complex conjugate, But in the following we would
treat £ and 7 as independent complex variables.

Now we give the following

Definition. If (& — 5) “*f (& 7 iz an analytic function of & and 7 near E=1, we say
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