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Abstract. The three-dimensional spherical polytropic Lane-Emden problem is y,, +
2/r)y,+y™ = 0,y(0) = 1,y,(0) = 0 where m € [0,5] is a constant parameter.
The domain is r € [0,&] where & is the first root of y(r). We recast this as a non-
linear eigenproblem, with three boundary conditions and & as the eigenvalue allow-
ing imposition of the extra boundary condition, by making the change of coordinate
X =1/E Yoo +(2/X)y, +E2y™ =0, y(0) = 1,y,(0) = 0, y(1) = 0. We find that a
Newton-Kantorovich iteration always converges from an m-independent starting point
yO(x) = cos([r/2]x), @ = 3. We apply a Chebyshev pseudospectral method to
discretize x. The Lane-Emden equation has branch point singularities at the endpoint
x = 1 whenever m is not an integer; we show that the Chebyshev coefficients are
a, ~ constant/n?™*> as n — co. However, a Chebyshev truncation of N = 100 always
gives at least ten decimal places of accuracy — much more accuracy when m is an inte-
ger. The numerical algorithm is so simple that the complete code (in Maple) is given as
a one page table.
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1. Introduction
The Lane-Emden problem is
Yrr+@2/M)y,+y"=0,  y(0)=1,y,(0)=0, (1.1

where m € [0,5] is a constant parameter. (This is the three-dimensional spherical poly-
tropic case whose astrophysical context is given in the book by the Nobel Laureate “Black
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Hole” Chandrasekhar [7]; other variants are described in [10].) The goal of the astrophys-
ical problem is to integrate this equation from the origin to its first zero, r = . It is helpful
to rescale the problem by defining

r=&x, x=r/&. (1.2)
The problem becomes
Yex +(2/X)y +E>y™=0,  y(0)=1,y,(0)=0,y(1)=0. (1.3)

This is a nonlinear eigenvalue problem with the location of the first zero & as the eigen-
value. The eigenvalue is chosen so that the extra boundary condition is satisfied. Analytical
solutions are known only for the exponent m equal to 0, 1 or 5 as catalogued in Table 1.

Table 1: Analytical exact solutions.

m y(r;m) & [first zero of y(r;m)]
ol 1-@/6) V6

1 sin(r)/r T

5

1/4/1+712%/3 00

The Lane-Emden problem has a long history. Numerical tables for selected values of
m were published as early as 1932. A small subset of the available literature is given
in the bibliography table. This problem has become one of those benchmarks which are
revisited repeatedly as every new numerical method is tested against it. In spite of this vast
literature, recent applications of higher spectral methods have sloughed over important
difficulties.

First, the Lane-Emden equation is singular at the right endpoint (where y(1) = 0)
whenever the order m is not equal to an integer. Singularities degrade the usual exponen-
tial rate of convergence of a spectral method to a finite order rate of convergence. That
is to say, the error falls proportional to 1/N¥ for some constant k, the so-called "algebraic
order of convergence", where k depends on the type of singularity as will be explained in
more detail below. Fortunately, it is possible to modify spectral methods so as to recover an
exponential rate of convergence as will be explained later. Second, the Lane-Emden prob-
lem is a nonlinear eigenvalue problem. Although the differential equation is the second
order, we need to satisfy three boundary conditions. This is possible because the problem
also contains an eigenparameter space & which must be determined simultaneously with
the solution to the differential equation.

2. Numerical strategies

One strategy is based upon the following theorem.

Theorem 2.1. Suppose that w(x, &) solves w,.,+(2/x)w,+&?w = 0 with w(0) = 1,w,(0) =
0,w(1) = 0. Then v = ww(x, &) solves v, + (2/x)v, + Z2v™ = 0 with v(0) = w, v,(0) =



