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Abstract. In Markov Chain Monte Carlo (MCMC) simulations, thermal equilibria quan-
tities are estimated by ensemble average over a sample set containing a large number
of correlated samples. These samples are selected in accordance with the probability
distribution function, known from the partition function of equilibrium state. As the
stochastic error of the simulation results is significant, it is desirable to understand the
variance of the estimation by ensemble average, which depends on the sample size
(i.e., the total number of samples in the set) and the sampling interval (i.e., cycle num-
ber between two consecutive samples). Although large sample sizes reduce the vari-
ance, they increase the computational cost of the simulation. For a given CPU time, the
sample size can be reduced greatly by increasing the sampling interval, while having
the corresponding increase in variance be negligible if the original sampling interval
is very small. In this work, we report a few general rules that relate the variance with
the sample size and the sampling interval. These results are observed and confirmed
numerically. These variance rules are derived for the MCMC method but are also valid
for the correlated samples obtained using other Monte Carlo methods. The main con-
tribution of this work includes the theoretical proof of these numerical observations
and the set of assumptions that lead to them.
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1 Introduction

The Monte Carlo method has successfully been applied to a wide variety of applica-
tions, which include the solution of integral equations by the Markov Chain Monte
Carlo (MCMC) method [1], the Boltzmann equation by the Direct Simulation Monte
Carlo (DSMC) method [2] and stochastic partial differential equations by a multilevel
Monte Carlo method [3]. We focus our discussion on the MCMC method. An essential
part of many scientific problems is to evaluate an integral in a high-dimensional space ~X
with the integrand containing a weighting function f (~X) (probability distribution func-
tion of the configuration ~X) which is large in some area but close to zero almost every-
where else. The computational cost of evaluating the integral by conventional quadra-
ture schemes is prohibitive since it demands a large number of quadrature points inside
a high-dimensional space. This integral can be estimated by the average value of the inte-
grand over a large number of configurations sampled inside the domain randomly, inde-
pendently and uniformly, using the Monte Carlo (MC) method. Metropolis and Ulam [4]
(see [5]) dubbed this simulation method Monte Carlo since it uses a large number of ran-
dom fractions generated by a computer. The accuracy of the MC method can be im-
proved by using the importance sampling scheme [6], which generates configurations
non-uniformly but according to an artificially selected probability density function g(~X),
which is close to f (~X), so that more probability mass is assigned to those configurations
with higher probability [5–7]. In order to ensure the sampled configurations remain in-
dependent, the process demands the primitive function G(~X) of g(~X) and its inverse
function ~X(G). Unfortunately, it is not feasible to find such g(~X) in most applications of
interest. Rather than generating independent configurations, the Metropolis method [1],
which still uses the importance sampling idea, generates (possibly) correlated configura-
tions from the original f (~X) by a Markov chain. The Markov chain makes the algorithm
simple and universal. This method is known as MCMC method [7]. Since the samples are
correlated with each other, the variance of MCMC simulations with the same sample size
is larger than the variance of the MC simulations using independent configurations. Ad-
ditionally, the variance of MCMC simulations usually depends on the sampling interval.

The use of averages is common in scientific studies and many quantities related to
thermal equilibria are averaged properties, measured in real experiments over large num-
bers of particles and long time intervals. If the ergodic hypothesis applies to the system at
the molecular level [5], we can compute those quantities by ensemble averaging instead
of time averaging using the probability distribution function f (~X), known from the par-
tition function of the equilibrium state, an idea stemming from statistical mechanics. The
MCMC method is a powerful tool based on ensemble averaging idea that can be used to
calculate the quantities related to the thermal equilibrium state.

A system with fixed particle number N, volume V, and temperature T can be de-
scribed by a canonical ensemble (constant-NVT), with the probability distribution func-
tion containing only the coordinates of the N particles as independent variables. This
description is valid for systems where the quantities of interest only depend explicitly


