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Abstract. A new weak boundary procedure for hyperbolic problems is presented. We
consider high order finite difference operators of summation-by-parts form with weak
boundary conditions and generalize that technique. The new boundary procedure is
applied near boundaries in an extended domain where data is known. We show how
to raise the order of accuracy of the scheme, how to modify the spectrum of the re-
sulting operator and how to construct non-reflecting properties at the boundaries. The
new boundary procedure is cheap, easy to implement and suitable for all numerical
methods, not only finite difference methods, that employ weak boundary conditions.
Numerical results that corroborate the analysis are presented.
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1 Introduction

High order finite difference methods provide an efficient approach for problems in com-
putational science. The efficiency can be used either to increase the accuracy for a fixed
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number of mesh points or to reduce the computational cost for a given accuracy by re-
ducing the number of mesh points [27, 48]. The main drawback with high order finite
difference methods is the complicated boundary treatment required to obtain a stable
method.

Finite difference operators which satisfy the summation-by-parts (SBP) property [28,
29, 42], are central difference operators in the interior domain augmented with special
stencils near the domain boundaries. These SBP operators in combination with weak
well-posed boundary conditions lead to energy stability [6, 8, 16, 19, 31, 40, 41]. One such
boundary treatment is the simultaneous approximation term (SAT) method [7], which
linearly combines the partial differential equation to be solved with well-posed boundary
conditions [5, 8, 34, 39].

In this paper we will extend this technique by applying the boundary conditions in
an extended domain. As an introduction, consider the continuous one-dimensional right
going (a>0) advection problem

ut+aux =0, 0≤ x≤1, t>0, (1.1)

with a boundary condition u(0,t)=g0(t) at x=0 for well-posedness. The energy method
applied to (1.1) yields the following continuous energy rate

d

dt
‖u‖2= au(0,t)2−au(1,t)2, (1.2)

where ‖u‖2=
∫ 1

0 u2dx. By letting u(0,t)= g0(t), well-posedness follows.
Let the approximative solution at grid point xi be denoted ui, and the discrete solu-

tion vector uT = [u0,u1,··· ,uN ]. A finite difference approximation of (1.1) using an SBP
operator with SAT treatment for the boundary condition can be written as

ut+aP−1Qu=P−1α00(u0−g0)e0, (1.3)

where the difference operator P−1Q approximates d/dx, P is symmetric and positive
definite, Q+QT = B = diag(−1,0,··· ,0,1), α00 is called the penalty coefficient and e0 =
[1,0,··· ,0]T is the unit vector that positions the penalty term at i=0. The discrete energy
method on (1.3) gives

d

dt
‖u‖2

P =(a+2α00)u2
0−2α00u0g0−au2

N , (1.4)

where ‖u‖2
P = uTPu. Clearly, for α00 ≤−(a/2), we have a bounded energy. Without

imposing boundary conditions (α00=0), the rate (1.4) mimics (1.2) perfectly. (A boundary
condition at x=0 is necessary for stability, and it will be imposed below.) For more details
using this technique, see [2, 7, 8, 31, 42].

The SAT technique (weak imposition of boundary condition or penalty technique) is
normally applied only at one grid point (as in the example above) [2, 3, 22, 23, 31, 36, 37,


