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Abstract. In this paper, we present an efficient computational methodology for dif-
fusion and convection-diffusion problems in highly heterogeneous media as well as
convection-dominated diffusion problem. It is well known that the numerical compu-
tation for these problems requires a significant amount of computer memory and time.
Nevertheless, the solutions to these problems typically contain a coarse component,
which is usually the quantity of interest and can be represented with a small num-
ber of degrees of freedom. There are many methods that aim at the computation of
the coarse component without resolving the full details of the solution. Our proposed
method falls into the framework of interior penalty discontinuous Galerkin method,
which is proved to be an effective and accurate class of methods for numerical solu-
tions of partial differential equations. A distinctive feature of our method is that the
solution space contains two components, namely a coarse space that gives a polyno-
mial approximation to the coarse component in the traditional way and a multiscale
space which contains sub-grid structures of the solution and is essential to the com-
putation of the coarse component. In addition, stability of the method is proved. The
numerical results indicate that the method can accurately capture the coarse behavior
of the solution for problems in highly heterogeneous media as well as boundary and
internal layers for convection-dominated problems.
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1 Introduction

Let Ω⊂R
2 be a domain in the two-dimensional space. We consider the following static

convection-diffusion problem
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L(u)≡∇·(~bu−a∇u)= f , in Ω, (1.1a)

u= g, on ∂Ω, (1.1b)

where~b is a given divergence-free vector field, f and g are given source and boundary
functions. We also consider the corresponding time-dependent problem

∂u

∂t
+L(u)= f , in (0,T)×Ω, (1.2a)

u= g, on (0,T)×∂Ω, (1.2b)

u(0,x)=u0, in Ω. (1.2c)

In (1.1) and (1.2), we assume the ellipticity condition that c1 ≥ a(x)≥ c0 > 0 for all x∈Ω

and for some constants c0 and c1. Our aim in this work is the numerical approximation

of (1.1) and (1.2) in the case when a and ~b are highly oscillatory or in the case when a
is very small in some region that gives a convection-dominated diffusion problem. It
is well-known that the solutions to these problems contain multiple scales, and the nu-
merical computations require a very fine grid. Thus, a significant amount of computer
memory and time are needed, and with the superior computing power nowadays, the
computation of the solutions to these problems is still very challenging and sometimes
even impossible. Nevertheless, the solutions to these problems typically contain a coarse
component, which is usually the quantity of interest and can be represented by a small
number of degrees of freedom. There are in literature many methods that aim at solving
these problems on a coarse grid with great success. For example, see [5, 6, 12–15, 17, 21]
for multiscale diffusion and wave problems, [16, 22] for multiscale convection-diffusion
problems and [20] for two-phase flow problems.

The discontinuous Galerkin (DG) method is proved to be an effective and accurate
class of tools for the numerical solutions of partial differential equations [1, 2, 4, 7–11].
The main idea is to use polynomial approximation on each cell without enforcing any
continuity along cell interfaces. The success of these methods is achieved by using some
sophisticated techniques to control the jumps. Due to the high efficiency and flexibility
of DG methods, there are some advancement in using DG methods for the numerical
approximation of problems with multiple scales. To the best of our knowledge, there are
two existing classes of methods in literature. First of all, the discontinuous enrichment
method has been proposed in [19] by Kalashnikova, Farhat and Tezaur. In this work,
the solution space is discontinuous and contains two components, which is a polyno-
mial space and a space spanned by the solution of local cell problem. One significant
assumption is that the solutions of the local cell problems can be solved analytically. For
problems with inhomogeneous media, the technique of frozen coefficient is applied. The
formulation of the discrete problem is based on a DG framework, but the continuity is
enforced by the method of Lagrange multiplier. The second class of method is the multi-
scale discontinuous Galerkin method proposed in [24] by Wang, Guzman and Shu. In this


