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Abstract. Explicit time stepping schemes for the immersed boundary method require
very small time steps in order to maintain stability. Solving the equations that arise
from an implicit discretization is difficult. Recently, several different approaches have
been proposed, but a complete understanding of this problem is still emerging. A
multigrid method is developed and explored for solving the equations in an implicit-
time discretization of a model of the immersed boundary equations. The model prob-
lem consists of a scalar Poisson equation with conformation-dependent singular forces
on an immersed boundary. This model does not include the inertial terms or the in-
compressibility constraint. The method is more efficient than an explicit method, but
the efficiency gain is limited. The multigrid method alone may not be an effective
solver, but when used as a preconditioner for Krylov methods, the speed-up over the
explicit-time method is substantial. For example, depending on the constitutive law
for the boundary force, with a time step 100 times larger than the explicit method,
the implicit method is about 15-100 times more efficient than the explicit method. A
very attractive feature of this method is that the efficiency of the multigrid precondi-
tioned Krylov solver is shown to be independent of the number of immersed boundary
points.
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1 Introduction

The immersed boundary (IB) method was developed by Peskin [18] to solve the coupled
equations of motion of viscous fluid with an immersed elastic boundary. The method was
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developed to simulate blood flow in the heart, and it has since been applied to many dif-
ferent biofluid applications, and it is increasingly being used in other engineering prob-
lems [12]. The method involves two coordinate systems and two discrete grids. The
fluid variables are represented in Eulerian coordinates which are discretized by a fixed,
Cartesian grid. The immersed structures are represented in moving Lagrangian coordi-
nates. The structures move at the local fluid velocity, interpolated from the Eulerian grid
to the Lagrangian grid. The forces generated by the deformation of the structures are
transferred to the Eulerian grid and appear as a forcing term in the momentum balance
equation for the fluid.

Typical implementations of the IB method use a fractional stepping approach to solve
the coupled fluid and boundary equations. The fluid velocity and pressure are updated
for fixed boundary position, and then the boundary position is updated from the new
velocity. Because the fluid and boundary are updated separately, one can use stan-
dard methods for solving for the fluid motion. One reason for the popularity of the
IB method is that many different applications can be simulated with minor changes to
existing codes. However, in many applications the elastic time scales are well below the
physical time scales of interest, which means that the IB equations are very numerically
stiff. When alternating between updating the fluid velocity and boundary position, this
stiffness requires that the time step be very small in order to maintain stability.

Much effort has been devoted to both understanding and alleviating the severe time
step restriction of IB methods [5,14,21]. Early attempts at implicit methods were not very
efficient and thus not competitive with explicit methods [25], and some semi-implicit
methods still presented significant time step restrictions [10, 11]. Newren et al. [14] an-
alyzed the origin of instability in semi-implicit methods using energy arguments, and
they gave sufficient conditions for schemes to be unconditionally stable in the sense that
the total energy is bounded regardless of the size of the time step. Recently a variety
of stable semi-implicit methods have been developed [3, 7, 8, 15], as well as several fully
implicit methods [9,13]. Of course, these methods require more sophisticated algorithms
in which the velocity and boundary position are solved for simultaneously. These recent
methods are generally competitive in efficiency with explicit methods, and in some spe-
cial cases they can be faster by factors of hundreds. It remains an open question as to
whether there is a general, robust implicit method that is easy to use and more efficient
than the explicit method for large classes of problems, or whether specialized methods
will need to be developed for specific problems.

Many implicit methods reduce the full IB equations (fluid and boundary) to equa-
tions on only the boundary [2, 3, 13]. These methods achieve a substantial speed-up over
explicit methods when there are relatively few immersed boundary points [3]. In addi-
tion, some methods require that the boundaries be smooth, closed curves [7, 8]. Newren
et al. [15] explored Kryolv methods for solving the linearized IB equations for different
test problems. The relative efficiency of the implicit methods depended on the prob-
lem, and unpreconditioned Krylov methods were at least comparable in speed to explicit
methods. These results suggest that with appropriate preconditioning, this approach


