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Abstract. In this paper, a novel approach for quantifying the parametric uncertainty
associated with a stochastic problem output is presented. As with Monte-Carlo and
stochastic collocation methods, only point-wise evaluations of the stochastic output
response surface are required allowing the use of legacy deterministic codes and pre-
cluding the need for any dedicated stochastic code to solve the uncertain problem of
interest. The new approach differs from these standard methods in that it is based
on ideas directly linked to the recently developed compressed sensing theory. The
technique allows the retrieval of the modes that contribute most significantly to the
approximation of the solution using a minimal amount of information. The genera-
tion of this information, via many solver calls, is almost always the bottle-neck of an
uncertainty quantification procedure. If the stochastic model output has a reasonably
compressible representation in the retained approximation basis, the proposed method
makes the best use of the available information and retrieves the dominant modes. Un-
certainty quantification of the solution of both a 2-D and 8-D stochastic Shallow Wa-
ter problem is used to demonstrate the significant performance improvement of the
new method, requiring up to several orders of magnitude fewer solver calls than the
usual sparse grid-based Polynomial Chaos (Smolyak scheme) to achieve comparable
approximation accuracy.
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1 Introduction

Uncertainty quantification has become a major concern for a wide range of communi-
ties. Indeed, in addition to providing accurate results, many simulation codes are now
also expected to account for uncertainty in some of the intrinsic parameters of the prob-
lem and to provide confidence intervals and statistics of the outputs. Two basic types
of uncertainty can be distinguished. Aleatory uncertainty may arise from the intrinsic
variability of a physical quantity, e.g., radioactive disintegration. The second type of un-
certainty, referred to as the epistemic uncertainty, arises from a lack of knowledge of the
considered quantity. In contrast to the aleatory uncertainty, the epistemic uncertainty
may be reduced with additional knowledge on the quantity. The uncertain parameters
may be initial or boundary conditions, geometric settings, constitutive material physical
properties, etc., and their variability is suitably modeled using random variables. Spe-
cific methods must be used to infer the resulting uncertainty of the simulation outputs
and provide statistical information such as mean, variance, quantiles, correlations, sta-
tistical moments or probability density functions of some quantities of interest, usually a
functional of the simulation outputs. The probabilistic approach is a natural framework
to achieve these objectives. While the original uncertain problem is sometimes of infinite
dimension, reasonably accurate modeling often allows approximating the uncertainty
sources with a finite set of real-valued random variables, for instance using a spectral de-
composition technique, opening a route for a tractable computational solution method.

Indisputably, the most widely used approach to quantify the uncertainty associated
with the solution of an uncertain problem is the Monte-Carlo approach. The probabilistic
space is sampled and the associated deterministic problem is solved. From the collec-
tion of solutions arising from the NMC samples, statistical information is derived. Sev-
eral specific features explain the success of the Monte-Carlo approach. The main one is
that the method relies only on the solution of deterministic problems, each solved for
a given set of deterministic input parameters, avoiding the need for a dedicated uncer-
tainty quantification-oriented code and allowing the use of legacy, well-validated and
certified, deterministic codes that are used as a black-box. Further, the samples being
drawn independently, it is embarrassingly straightforward to carry the NMC simulations
in parallel. The method is very general and robust and does not rely on assumptions
on the solution. This robustness and simplicity come with a price that is most appar-

ent in the poor O
(

N−1/2
MC

)
convergence rate. Although numerous variants of the origi-

nal Monte-Carlo method have been proposed, modifying the functional evaluated (Im-
portance Sampling) or the way independent samples are generated (quasi-Monte-Carlo,
Stratified Sampling, etc.), the convergence rate remains unchanged, with only the asso-
ciated constant improved. This low convergence rate leads to requiring an unacceptably
large number of simulations to compute reasonably converged statistics, precluding the
use of Monte-Carlo methods in cases the deterministic simulation computational time is

large. However, in contrast with other methods, the O
(

N−1/2
MC

)
convergence rate is in-

sensitive to the stochastic dimension of the uncertainty sources, making the Monte-Carlo


