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Abstract. The maximum principle is a basic qualitative property of the solution of
second-order elliptic boundary value problems. The preservation of the qualitative
characteristics, such as the maximum principle, in discrete model is one of the key
requirements. It is well known that standard linear finite element solution does not
satisfy maximum principle on general triangular meshes in 2D. In this paper we con-
sider how to enforce discrete maximum principle for linear finite element solutions for
the linear second-order self-adjoint elliptic equation. First approach is based on repair
technique, which is a posteriori correction of the discrete solution. Second method
is based on constrained optimization. Numerical tests that include anisotropic cases
demonstrate how our method works for problems for which the standard finite ele-
ment methods produce numerical solutions that violate the discrete maximum princi-

ple.
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1 Introduction

In this paper we consider two approaches to enforce discrete maximum principle for lin-
ear finite element solution of the linear second-order self-adjoint elliptic equation without
lower-order terms.
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It is well known that standard finite element methods can for some problems produce
numerical solutions violating a discrete maximum principle (DMP) which is the discrete
analog of the maximum principle, see, e.g., [1-7]. In the classical paper [8] Ciarlet and
Raviart show that for the case of scalar isotropic diffusion coefficient the standard linear
finite element method applied to Poisson equation satisfies the DMP on weakly acute
triangular meshes. The weakly acute geometric condition is a typical condition under
which some numerical methods produce solutions satisfying the DMP. The uniform con-
stant anisotropic diffusion tensor can be transformed to the isotropic tensor (or the scalar
diffusion coefficient) by rotating and scaling the coordinate system, so that one can use
the acute conditions in the transformed coordinates. However, often one cannot choose
the computational mesh or the anisotropy ratio is too big to provide a practical compu-
tational acute mesh in the transformed coordinates.

The issues related to the DMP have been studied by many researches. Here we try
to review the recent contributions in the issues. The DMP for stationary heat conduc-
tion in nonlinear, inhomogeneous, and anisotropic media is analyzed by Krizek and Liu
in [9,10]. The dependence of DMP on mesh properties for finite element solutions of el-
liptic problems with mixed boundary conditions is considered by Karatson and Korotov
in [11,12]. Burman and Ern [13] have developed a nonlinear stabilized Galerkin approx-
imation of the Laplace operator whose solutions satisfy the DMP without the need to
satisfy the acute condition. However, this requires solving a nonlinear system of equa-
tions instead of a standard linear one. Le Potier has proposed a finite volume scheme
for highly anisotropic diffusion problems on unstructured meshes [2] and improved it
to the nonlinear version [3] which is monotone for a parabolic problem with sufficiently
small time step. It has been further improved by Lipnikov et al. in [6], resulting in a non-
linear monotone finite volume scheme for elliptic problems which keeps positivity of the
solution, however, can still violate the DMP. Mlacnik and Durlofsky [5] perform mesh op-
timization to improve the monotonicity of the numerical solution for highly anisotropic
problems. A new mixed finite volume scheme for anisotropic diffusion problems has
been developed by Droniou and Eymard in [4], however, it does not satisfy the DMP
for highly anisotropic problems. The DMP has been investigated by means of discrete
Green’s function positivity by Draganescu et al. in [1]. The DMP for 1D problems with
discontinuous coefficients is studied by Vejchodsky and Solin in [14]. The criteria for the
monotonicity of control volume methods on quadrilateral meshes are derived by Nord-
botten et al. in [7]. The elliptic solver on Cartesian grids for interface problems by Deng
et al. [15] uses the standard scheme away from the interface, and a positive scheme at the
interface is derived by using constrained optimization techniques. Hoteit et al. [16] study
how to avoid violation of the DMP by the mixed-hybrid finite-element method (MH-
FEM) applied to a parabolic diffusion problem and propose two techniques reducing the
MHFEM to finite difference methods obeying the DMP.

Our first approach to enforce discrete maximum principle is based on repair tech-
nique, [20-22], which is a posteriori correction of the discrete solution. Second method
is based on constrained optimization. The quadratic optimization problem is related to



