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Abstract. In this paper, the three-dimensional lattice kinetic scheme is presented to
simulate incompressible viscous thermal flows. As compared with the standard LBM,
the present scheme has the following good features. It can save the computer mem-
ory since there is no need to store the density distributions. Like the conventional NS
solvers, the implementation of boundary conditions is straightforward since the de-
pendent variables are the macroscopic flow parameters. The easy implementation of
boundary conditions is a good property for solving three-dimensional flow problems.
The present scheme is validated by simulating the three-dimensional natural convec-
tion in an air-filled cubical enclosure, which is heated differentially at two vertical side
walls. The obtained numerical results compare very well with available data in the
literature.
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1 Introduction

The lattice Boltzmann method (LBM) is an alternative numerical scheme for simulating
viscous flows [1, 2]. It has been widely used in many kinds of complex flows such as the
turbulent flow, multiphase flow and micro-flow [3]. It has the following good features:
the linear convection operator in the phase space, the pressure calculated using an equa-
tion of state and the use of a minimal set of velocities in the phase space. Furthermore, it
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has the intrinsic feature of parallelism. The only variables for LBM are the density distri-
butions. The mapping from the density distributions to the fluid variables is a straight-
forward summation. In contrast, the inverse mapping from the fluid variables to the
density distributions is somewhat tricky to make, especially for the three-dimensional
problem. However, on the boundaries, the macroscopic fluid variables, instead of the
density distributions, are usually given as the boundary conditions. The inverse map-
ping has to be used on the boundaries. Different ways to make the inverse mapping
form different methods to implement boundary conditions. The bounce-back rule for the
boundary condition is the simplest way to impose on the solid wall. Particles that meet
at a wall point are simply bounced back with a reverse direction. This rule leads to a
non-slip boundary located at somewhere between the wall nodes and the adjacent fluid
nodes [4]. It is found to be only the first order in the numerical accuracy at the bound-
aries [5, 6] and its serious shortcomings have been pointed out by Noble et al [7]. More
sophisticated boundary conditions, which model the non-slip boundary exactly at the
wall nodes, have been proposed by several authors [8, 9]. Among them, the consistent
hydrodynamic boundary condition has been widely used in recent years. It calculates
the unknown density distributions from the velocity boundary conditions and the den-
sity distributions of neighboring fluid nodes near the boundary. This requires that the
unknown density distributions should not exceed the available number of equations for
the density and momentum. For two dimensions, the number of available equations is
three and it is four for three dimensions. However, for the general three-dimensional
problems, the unknown density distributions usually exceed four, especially for the cor-
ner points. The supplementary rules have to be introduced. Chen et al. [10] proposed
a new boundary condition using a second-order extrapolation scheme to obtain the un-
known density distributions on the boundary. Bouzidi et al. [11] proposed a new scheme
for wall boundary conditions. It uses the bounce-back rule and interpolation. Ginzburg
and d’Humiéres [12] presented a general framework for several previously introduced
boundary conditions, such as the bounce-back rule and the linear and quadratic inter-
polations, and designed boundary conditions for general flows which are third-order
kinetic accurate. Starting from the well developed theory of boundary conditions for the
continuous Boltzmann equation, Ansumali and Karlin [13] derived the boundary condi-
tion for the discrete set of velocities. Using this boundary condition, the Knudsen layer
in the Kramers’ problem is reproduced correctly for small Knudsen numbers.

As an alternative approach, the two-dimensional lattice kinetic scheme was proposed
by Inamuro [14]. Similar idea was also proposed by Martys [15]. It is based on the idea
that if the dimensionless relaxation time in the LBM with BGK model is set to unity,
the macroscopic variables can be calculated without using density distributions and the
scheme becomes very similar to the kinetic approach. By merging the LBM with kinetic
scheme, the implementation of boundary conditions is very easy and straightforward
since on the boundaries, only the macroscopic variables are needed as for the conven-
tional NS solvers. This feature is very distinguished as compared with the conventional
LBM when the flow problems with complex geometry are solved. In addition, it can


