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Abstract. Wigner function is a fundamental method to study the connection between
quantum and classical system. Since negative value can be accepted by Wigner func-
tion even from a positive initial condition, they are various issues existing in corre-
sponding interpretation as well as the development of numerical methods. We present
the entangled trajectories based on the Wigner distributions with negative values.
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1 Introduction

Wigner function can reveal the deep insights between quantum system and classical
world. It has the similar form compared with classical probability distribution which
can be integrated over the whole phase space to obtain unit. However, negative values of
Wigner function indicate that such a function can only be regarded as quasi-probability
distribution. Such a characteristic cause many issues when we want to propagate Wigner
function in a general form. Meanwhile, negative values, illustrated in Fig. 1, for instance,
also make the distinctions between quantum and classical trajectories in the phase space.
We choose a special case to propagate Wigner function precisely by eigenvalues and then
analysis the natures of the entangled trajectories in detail.

2 Wigner function and Liouville equation

Here we only consider one dimensional case since multi-dimensional can be easily ex-
panded. As a solution from time-dependent Schrödinger equation, Ψ(x) can be used to
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construct Wigner function as follows:

ρw(q,p;t)=
1

2πh̄

∫

Ψ∗(q+x/2,t)Ψ(q−x/2,t)e(ipx/h̄)dx. (1)

Combined with the time-dependent Schrödinger equation, we can obtain the quantum
Liouville equation

∂ρw

∂t
=− p

m

∂ρw

∂q
+
∫

J(q,ξ−p)ρw(q,ξ)dξ, (2)

where

J(q,ξ)=
i

2πh̄2

∫ ∞

−∞
[V(q+y/2)−V(q−y/2)]e(−izξ/h̄)dz. (3)

Similar as a probability distribution, we can impose the continuity condition as

∂ρw

∂t
=−~∇·~j, (4)

where~j=(jq, jp) is the current vector in phase space and ~∇=(∂/∂q,∂/∂p)is the gradient
operator. The current is as follows

~∇·~j= ∂

∂q
(

p

m
ρw)−

∫ ∞

−∞
J(q,ξ−p)ρw(q,ξ,t)dξ, (5)

with

jq =
p

m
ρw, (6)

jp=−
∫ ∞

−∞
Θ(q,ξ−p)ρw(q,ξ,t)dξ, (7)

and

Θ(q,η)=
1

2πh̄

∫ ∞

−∞
[V(q+y/2)−V(q−y/2)]

e−iıηy/h̄

y
dy. (8)

Since we can link the current density to density as well as velocity field in phase space by
~j=ρw~v, we can finally deduce the equation of motion for the entangled trajectories as [1]

q̇=
p

m
, (9)

ṗ=
1

ρw

∫ ∞

−∞
Θ(q,p−ξ)ρw(q,ξ)dξ.

We can use the above formula to realize the time evolution of the entangled trajectories.


