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Abstract. The non-relativistic energies and wavefunctions of 1s2np and 1s2nd states for

Zn27+ ion are obtained by using the full-core plus correlation method. The expectation

values of the spin-orbit and spin-other-orbit interaction operators in these states are calcu-

lated. By introducing the effective nuclear charge, the higher-order relativistic contribution

and QED correction to the fine structure splittings are estimated.
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1 Introduction

The structures and properties of highly ionized atomic systems have many characteristics dif-

ferent from that of neutral or lowly ionized atoms [1]. One among them is the fine structure

splitting which rapidly grows to become “not-so-fine” [2]. As knows, the basic physical mecha-

nism leading to fine structure is the spin-orbit interaction, the scaling of which is proportional

to four powers of effective nuclear charge isoelectronically.

In this paper, by using the wavefunctions determined in calculating non-relativistic en-

ergies of 1s2np and 1s2nd states for Zn27+ ion with the full-core plus correlation (FCPC)

method [3], the expectation values of the spin-orbit and spin-other-orbit interaction opera-

tors, as the first-order approximation of fine structure splitting in 1s2np and 1s2nd states for

Zn27+ ion, are calculated. The higher-order relativistic contribution and QED correction to

the fine structure splittings are estimated by introducing the effective nuclear charge. The

contributions to the fine structure splittings from the first-order approximation, the higher-

order relativistic, and QED correction, which given respectively in a table, are quantitatively

analyzed.
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2 Theoretical method

The wavefunctions of 1s2np and 1s2nd states for lithiumlike Zn27+ ion are given by [3]
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The details of every terms in Eq. (1) can be found in Ref. [3]. The parameters in Eq. (1)

are determined by solving the secular equation of the system. In this process, the FCPC-type

wavefunctios, Eq. (1) , of 1s2np and 1s2nd states for Zn27+ ion are completely determined.

The first-order approximation of fine structure splitting in 1s2np and 1s2nd states for

the ion is given by the expectation values of the spin-orbit and spin-other-orbit interaction

operators which are
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The effective nuclear charge, Zeff, affected by nl (l = p, and d) electron in the system can

defined as follows [4–7]
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where ∆E1 is the contributions from the expectation values of one-particle operators includ-

ing the correction to kinetic energy and Darwin term. The explicit expressions of these two

operators can be found in Refs. [3, 8]. The higher-order relativistic contribution to the fine

structure splittings are estimated in terms of the following equation

∆Ehigher−order =EDirac(Zeff)−E(1)(Zeff), (5)

where EDirac is the eigenvalue of one-electron Dirac equation in Coulomb potential [8] which

can be reduced to E(1) if the α2Z4-order contribution is only retained.

By using Zeff defined in Eq. (4), QED correction to the fine structure splittings can be also

evaluated [8]
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