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Abstract

We consider optimal control problems of elliptic PDEs on hypersurfaces T" in R" for
n = 2,3. The leading part of the PDE is given by the Laplace-Beltrami operator, which
is discretized by finite elements on a polyhedral approximation of I'. The discrete optimal
control problem is formulated on the approximating surface and is solved numerically with
a semi-smooth Newton algorithm. We derive optimal a priori error estimates for problems
including control constraints and provide numerical examples confirming our analytical
findings.
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1. Introduction

We are interested in the numerical treatment of the following linear-quadratic optimal con-
trol problem on a n-dimensional, sufficiently smooth hypersurface I' ¢ R*t!, n =1,2.
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subject to w € U,q and (1.1)

/Vryvl“tp-i-Cytde = / updl' Yo € H(T)
I N

with Uyq = {U eL*) |a<v < b}, a < b € R . For simplicity we will assume I" to be compact
and ¢ = 1. In section 4 we briefly investigate the case ¢ = 0, in section 5 we give an example
on a surface with boundary.

Problem (1.1) may serve as a mathematical model for the optimal distribution of surfactants
on a biomembrane I' with regard to achieving a prescribed desired concentration z of a quantity
Y.

It follows by standard arguments that (1.1) admits a unique solution u € U,q with unique
associated state y = y(u) € H*(T).

Our numerical approach uses variational discretization applied to (1.1), see [9] and [10], on a
discrete surface I'* approximating I'. The discretization of the state equation in (1.1) is achieved
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by the finite element method proposed in [4], where a priori error estimates for finite element
approximations of the Poisson problem for the Laplace-Beltrami operator are provided. Let us
mention that uniform estimates are presented in [2], and steps towards a posteriori error control
for elliptic PDEs on surfaces are taken by Demlow and Dziuk in [3]. For alternative approaches
for the discretization of the state equation by finite elements see the work of Burger [1]. Finite
element methods on moving surfaces are developed by Dziuk and Elliott in [5]. To the best of
the authors knowledge, the present paper contains the first attempt to treat optimal control
problems on surfaces.

We assume that I' is of class C2. As an embedded, compact hypersurface in R™*! it is
orientable with an exterior unit normal field v and hence the zero level set of a signed distance
function d such that

|d(z)| = dist(z,T") and v(z) = % for z e T.

Further, there exists an neighborhood N' C R**! of ', such that d is also of class C? on N and
the projection
a:N =T, a(z)=2z—d(z)Vd(x) (1.2)

is unique, see e.g. [6, Lemma 14.16]. Note that Vd(z) = v(a(x)).

Using a we can extend any function ¢ : I' — R to AN as ¢(z) = ¢(a(z)). This allows us
to represent the surface gradient in global exterior coordinates Vr¢ = (I — vv7)V¢, with the
euclidean projection (I — vvT) onto the tangential space of T.

We use the Laplace-Beltrami operator Ar = Vr - Vr in its weak form i.e. Ar: HY(T) —
Hl (F)*

Y = 7/prVF(~)dF S Hl(l“)*.
r
Let S denote the prolongated restricted solution operator of the state equation
S:L* ) = L*(T), uwy —Ary+cy =u,

which is compact and constitutes a linear homeomorphism onto H?(T'), see [4, 1. Theorem].
By standard arguments we get the following necessary (and here also sufficient) conditions
for optimality of u € Uyq

(Vi (u,y(u)),v — U>L2(F)
=(au+ S*(Su—2),v —u)r2ry >0 Vv € Uq. (1.3)

We rewrite (1.3) as
1
u="Py,, (—QS*(Su—z)) , (1.4)

where Pr;_, denotes the L?-orthogonal projection onto Upg.

2. Discretization

We now discretize (1.1) using an approximation I'* to I' which is globally of class C%*.
Following Dziuk, we consider polyhedral T = Uie I TZ; consisting of triangles T,i with corners
on I'; whose maximum diameter is denoted by h. With FEM error bounds in mind we assume



