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Abstract

We consider optimal control problems of elliptic PDEs on hypersurfaces Γ in Rn for

n = 2, 3. The leading part of the PDE is given by the Laplace-Beltrami operator, which

is discretized by finite elements on a polyhedral approximation of Γ. The discrete optimal

control problem is formulated on the approximating surface and is solved numerically with

a semi-smooth Newton algorithm. We derive optimal a priori error estimates for problems

including control constraints and provide numerical examples confirming our analytical

findings.
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1. Introduction

We are interested in the numerical treatment of the following linear-quadratic optimal con-

trol problem on a n-dimensional, sufficiently smooth hypersurface Γ ⊂ Rn+1, n = 1, 2.

min
u∈L2(Γ), y∈H1(Γ)

J(u, y) =
1

2
‖y − z‖2L2(Γ) +

α

2
‖u‖2L2(Γ)

subject to u ∈ Uad and∫
Γ

∇Γy∇Γϕ+ cyϕdΓ =

∫
Γ

uϕdΓ ,∀ϕ ∈ H1(Γ)

(1.1)

with Uad =
{
v ∈ L2(Γ) | a ≤ v ≤ b

}
, a < b ∈ R . For simplicity we will assume Γ to be compact

and c = 1. In section 4 we briefly investigate the case c = 0, in section 5 we give an example

on a surface with boundary.

Problem (1.1) may serve as a mathematical model for the optimal distribution of surfactants

on a biomembrane Γ with regard to achieving a prescribed desired concentration z of a quantity

y.

It follows by standard arguments that (1.1) admits a unique solution u ∈ Uad with unique

associated state y = y(u) ∈ H2(Γ).

Our numerical approach uses variational discretization applied to (1.1), see [9] and [10], on a

discrete surface Γh approximating Γ. The discretization of the state equation in (1.1) is achieved
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by the finite element method proposed in [4], where a priori error estimates for finite element

approximations of the Poisson problem for the Laplace-Beltrami operator are provided. Let us

mention that uniform estimates are presented in [2], and steps towards a posteriori error control

for elliptic PDEs on surfaces are taken by Demlow and Dziuk in [3]. For alternative approaches

for the discretization of the state equation by finite elements see the work of Burger [1]. Finite

element methods on moving surfaces are developed by Dziuk and Elliott in [5]. To the best of

the authors knowledge, the present paper contains the first attempt to treat optimal control

problems on surfaces.

We assume that Γ is of class C2. As an embedded, compact hypersurface in Rn+1 it is

orientable with an exterior unit normal field ν and hence the zero level set of a signed distance

function d such that

|d(x)| = dist(x,Γ) and ν(x) =
∇d(x)

‖∇d(x)‖
for x ∈ Γ.

Further, there exists an neighborhood N ⊂ Rn+1 of Γ, such that d is also of class C2 on N and

the projection

a : N → Γ , a(x) = x− d(x)∇d(x) (1.2)

is unique, see e.g. [6, Lemma 14.16]. Note that ∇d(x) = ν(a(x)).

Using a we can extend any function φ : Γ → R to N as φ̄(x) = φ(a(x)). This allows us

to represent the surface gradient in global exterior coordinates ∇Γφ = (I − ννT )∇φ̄, with the

euclidean projection (I − ννT ) onto the tangential space of Γ.

We use the Laplace-Beltrami operator ∆Γ = ∇Γ · ∇Γ in its weak form i.e. ∆Γ : H1(Γ) →
H1(Γ)∗

y 7→ −
∫

Γ

∇Γy∇Γ( · ) dΓ ∈ H1(Γ)∗ .

Let S denote the prolongated restricted solution operator of the state equation

S : L2(Γ)→ L2(Γ) , u 7→ y −∆Γy + cy = u ,

which is compact and constitutes a linear homeomorphism onto H2(Γ), see [4, 1. Theorem].

By standard arguments we get the following necessary (and here also sufficient) conditions

for optimality of u ∈ Uad

〈∇uJ(u, y(u)), v − u〉L2(Γ)

=〈αu+ S∗(Su− z), v − u〉L2(Γ) ≥ 0 ∀v ∈ Uad . (1.3)

We rewrite (1.3) as

u = PUad

(
− 1

α
S∗(Su− z)

)
, (1.4)

where PUad denotes the L2-orthogonal projection onto Uad.

2. Discretization

We now discretize (1.1) using an approximation Γh to Γ which is globally of class C0,1.

Following Dziuk, we consider polyhedral Γh =
⋃
i∈Ih T

i
h consisting of triangles T ih with corners

on Γ, whose maximum diameter is denoted by h. With FEM error bounds in mind we assume


