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Abstract

The Hermitian and skew-Hermitian splitting (HSS) method is an unconditionally con-

vergent iteration method for solving large sparse non-Hermitian positive definite system of

linear equations. By making use of the HSS iteration as the inner solver for the Newton

method, we establish a class of Newton-HSS methods for solving large sparse systems of

nonlinear equations with positive definite Jacobian matrices at the solution points. For this

class of inexact Newton methods, two types of local convergence theorems are proved under

proper conditions, and numerical results are given to examine their feasibility and effec-

tiveness. In addition, the advantages of the Newton-HSS methods over the Newton-USOR,

the Newton-GMRES and the Newton-GCG methods are shown through solving systems

of nonlinear equations arising from the finite difference discretization of a two-dimensional

convection-diffusion equation perturbed by a nonlinear term. The numerical implemen-

tations also show that as preconditioners for the Newton-GMRES and the Newton-GCG

methods the HSS iteration outperforms the USOR iteration in both computing time and

iteration step.
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1. Introduction

Large sparse systems of nonlinear equations arise in many areas of scientific computing and
engineering applications, e.g., in discretizations of nonlinear differential and integral equations,
numerical optimization and so on; see [10,26,27] and references therein.

Let F : D ⊂ Cn → Cn be a nonlinear and continuously differentiable mapping defined on
the open convex domain D in the n-dimensional complex linear space Cn, and consider systems
of nonlinear equations of the form

F (x) = 0. (1.1)

We assume that the Jacobian matrix of the nonlinear function F (x) at the solution point x? ∈ D,
denoted as F ′(x?), is sparse, non-Hermitian, and positive definite. Here, the matrix F ′(x), for
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x ∈ D, is said to be positive definite if its Hermitian part

H(F ′(x)) :=
1
2
(F ′(x) + F ′(x)∗)

is positive definite, where F ′(x)∗ represents the conjugate transpose of F ′(x). For notational
convenience, we also denote by

S(F ′(x)) :=
1
2
(F ′(x)− F ′(x)∗)

the skew-Hermitian part of F ′(x); see [7, 12, 15, 18]. In this paper, we will study effective
iteration methods and their convergence properties for solving this class of nonlinear systems.

The most classic and important solver for the system of nonlinear equations (1.1) may be
the Newton method, which can be formulated as

x(k+1) = x(k) − F ′(x(k))−1F (x(k)), k = 0, 1, 2, . . . , (1.2)

where x(0) ∈ D is a given initial vector; see [11,26,27,29]. Obviously, at the k-th iteration step
we need to solve the so-called Newton equation

F ′(x(k))s(k) = −F (x(k)), with x(k+1) := x(k) + s(k), (1.3)

which is the dominant task in implementations of the Newton method. When the Jacobian
matrix F ′(x) is large and sparse, iterative methods either of the splitting relaxation form
(e.g., Gauss-Seidel, SOR 1) and USOR 2) ; see [19, 26]) or of the Krylov subspace form (e.g.,
GMRES, BiCGSTAB and GCG 3) ; see [4,25,28]) are often the methods of choice for effectively
computing an approximation to the update vector s(k); see also [1, 2, 5, 6, 13]. This naturally
results in the following inexact version of the Newton method for solving the system of nonlinear
equations (1.1):

x(k+1) = x(k) + s(k), with F ′(x(k))s(k) = −F (x(k)) + r(k), (1.4)

where r(k) is a residual yielded by the inner iteration due to the inexact solving; see [10,11,21,23].
Note that the convergence of the splitting relaxation methods is guaranteed only for Hermitian
positive definite matrices or H-matrices, while this class of methods often requires much less
computing operations at each iteration step and also much less computer storage than the
Krylov subspace methods in actual implementations.

Recently, a Hermitian and skew-Hermitian splitting (HSS) iteration method was presented
in [15] for solving large sparse system of linear equations with a non-Hermitian positive definite
coefficient matrix, say A ∈ Cn×n; see also [12, 18]. Theoretical analysis has demonstrated that
the HSS iteration method converges unconditionally to the exact solution, with the bound on
the rate of convergence about the same as that of the conjugate gradient method when applied to
the Hermitian matrix H(A) := 1

2 (A+A∗), and numerical experiments have shown that the HSS
iteration method is very efficient and robust for solving non-Hermitian positive definite linear
systems. Moreover, the HSS iteration method possesses a comparative memory requirement,
but faster convergence rate, than the USOR iteration method, especially for matrices having
strong skew-Hermitian parts.

1) SOR represents the successive overrelaxation method.
2) USOR represents the unsymmetric successive overrelaxation method.
3) GCG represents the generalized conjugate gradient method.


