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Abstract
A new algorithm for finding the inverse of a nonsingular scaled factor circulant matrix
is presented by the Euclid’s algorithm. Extension is made to compute the group inverse
and the Moore-Penrose inverse of the singular scaled factor circulant matrix. Numerical
examples are presented to demonstrate the implementation of the proposed algorithm.
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1. Introduction

Circulant matrices, as an important class of special matrices, have a wide range of interesting
applications [12-19]. They have in recent years been applied in many areas, see, e.g., [2, 3, 6,
10, 11, 15, 17]. Scaled circulant permutation matrices and the matrices that commute with
them are natural extensions of this well-studied class, see, e.g., [1, 20-23]. In particular, it
will be seen that r-circulant matrices [10, 11] are precisely those matrices commuting with the
scaled circulant permutation matrix.

This paper presents an efficient algorithm to compute the inverse of a nonsingular scaled
factor circulant matrix or to compute the group inverse and Moore-Penrose inverse of the
circulant matrix when it is singular. The algorithm has small computational complexity. It is
a notable character of the algorithm that the singularity of the scaled factor circulant matrix
need not be priori known.

We define R as the scaled circulant permutation matrix, that is,

0 d 0 ... 0 0
0 0 do ... 0 0

R=1| ... .. .. .. (1.1)
0 0 0 ... 0 dyp
d, 0 0 ... 0 0

nxn

This paper deals with the case where R is nonsingular (d; # 0 and fixed).
It is easily verified that the polynomial g(z) = 2™ — dydz...d, is both the minimal poly-
nomial and the characteristic polynomial of the matrix R. In addition, R is nondergatory.
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Moreover, R is normal if and only if |d1| = |da2| = - - - = |d,|, where |d;|,i = 1, -+ ,n denote the
modulus of the complex number d;,i =1,--- ,n.

Definition 1.1. An n x n matrix A over C is called a scaled factor circulant matriz if A

commutes with R, that is,
AR = RA, (1.2)

where R is given in (1.1).

Let RSFCM,, be the set of all complex n X n matrices which commute with R. In the
following, with A = scacircg(ag, a1, - ,an—1) we denote the scaled factor circulant matrix A
whose first row is (ag,a1,...,a,-1). Remark that the first row of A completely defines the
matrix. Indeed, since R is nonderogatory, Eq. (1.2) is fulfilled if and only if A = f(R) for some
polynomial f. Furthermore, RSFCM,, is a vector space of dimension n, and there is a clear
one-to-one correspondence between the polynomials of degree at most n — 1 and the numbers
ag, 5 an_1.

For an m x n matrix A, any solution to the matrix equation AX A = A is called a generalized
inverse of A. In addition, if X satisfies X = X AX, then A and X are said to be semi-inverses,
see, e.g., [2].

In this paper we only consider square matrices A. In [8, p.51] the smallest positive integer k
for which rank(A*+1)=rank(A¥) holds is called the index of A. If A has index 1, the generalized
inverse X of A is called the group inverse A% of A. Clearly, A and X are group inverses if and
only if they are semi-inverses and AX = X A.

In [4, 5] a semi-inverse X of A was considered in which the nonzero eigenvalues of X are
the reciprocals of the nonzero eigenvalue of A. These matrices were called spectral inverses.
It was shown in [5] that a nonzero matrix A has a unique spectral inverse, A%, if and only if A
has index 1: when A® is the group inverse A% of A.

2. The Properties of the Scaled Factor Circulant Matrix

Lemma 2.1. ([1]) If R is a scaled circulant permutation matriz, and if k is a positive integer,
then R*¥ = DWCk where D) is the diagonal matriz whose (j,j) entry is Hii]k_l dy for
1<j<nand C = circ(0,1,0,---,0) is the circulant permutation. Furthermore,

R'=([[d)Ln, detR=(-1)"""]]d;.
j=1 j=1

Let w = exp(%) be a primitive nth root of unity. Then w; = dw’,j = 0,1,--- ,n — 1 are
the distinct roots of g(x), where g(z) = 2™ — dyds - - - d;,, and
n
1
d=([]d)= #0. (2.1)
t=1
Let F be the n x n unitary Fourier matrix such that
1 . .
Fj=— w00 for 1 <i, j<n. (2.2)
n

Let
A= diag(&l, (527 s 7571); (23)



