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Abstract

We study the initial value problem of the Helmholtz equation with spatially variable

wave number. We show that it can be stabilized by suppressing the evanescent waves. The

stabilized Helmholtz equation can be solved numerically by a marching scheme combined

with FFT. The resulting algorithm has complexity n
2 log n on a n×n grid. We demonstrate

the efficacy of the method by numerical examples with caustics. For the Maxwell equation

the same treatment is possible after reducing it to a second order system. We show how the

method can be used for inverse problems arising in acoustic tomography and microwave

imaging.
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1. Introduction

The initial value problem for elliptic equations, such as the Helmholtz and the Maxwell

equations, are notoriously unstable. There exists a huge literature on stabilizing these initial

value problems. Common features of these works are the use of a-priori information about the

exact solution and conditional stability estimates; see [1]. For a recent paper that provides an

overview and the spirit of these works see [2].

In this paper we follow a completely different route. We consider a differential equation of

the form

∆u + k2(1 + f(x))u = 0. (1.1)

For a large parameter k we show that the Cauchy initial value problem for this equation is

perfectly stable, provided we restrict ourselves to low frequencies, i.e., the part of the solution

u that is obtained by low-pass filtering u with a cut-off frequency near k. In other words, the

instability is a pure high frequency phenomenon and disappears as soon as the high frequencies

are removed. We do not need a-priori assumptions, and our estimates are linear. Physically

our stabilization means the removal of the evanescent waves.

Estimates of this type were derived in [7] for the Helmholtz equation and in [6] for the

Maxwell equations by energy estimates. These estimates contain powers of order 2 and even 4

of k which make the application to high frequency imaging questionable. In Section 2 we derive

new estimates with a much better behavior in terms of k. In fact they have negative powers of

k. These new estimates are based on the thesis [10]. They can be viewed as the analogue of the
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famous 1/k estimates for the inverse Helmholtz operator of [4] and [3]; they are also reminiscent

of the recent work [9]. In Section 3 we give numerical examples for initial value problems with a

focal point. In Section 4 we demonstrate the usefulness of the initial value approach to inverse

problems.

2. Stability Estimates

For simplicity we restrict ourselves to the Helmholtz case with zero initial values, i.e., we

consider the initial value problem

∆u + k2(1 + f)u = r, x2 > 0, u(x1, 0) = 0,
∂u

∂x2
(x1, 0) = 0. (2.1)

Theorem 2.1. Let f ∈ C1(R2) be real valued and supported in [−ρ, ρ]× [0,∞], and let m be a

constant such that −1 < m ≤ f . Then, for κ = θk
√

1 + m, 0 < θ < 1, there exists a constant c

such that

||ukϑ(·, x2)||L2(−ρ,ρ) ≤
√

ρeρc

kϑ
||r||L2(−ρ,ρ)×(0,ρ), (2.2)

where

ϑ =
√

1 + m
√

1 − θ2. (2.3)

Proof. In a first step we assume f to be piecewise constant as a function of x2, i.e.,

f(x1, x2) = fi(x1), ih ≤ x2 ≤ (i + 1)h

with some h > 0. Fourier transforming (2.1) with respect to x1 yields for ih ≤ x2 ≤ (i + 1)h

d2

dx2
2

û(·, x2) + Aiû(·, x2) = r̂(·, x2), (2.4)

the operator Ai in L2(R
1) being defined by

(Aiv)(ξ1) = (k2 − ξ2
1)v(ξ1) + (2π)−1/2k2(f̂i ∗ v)(ξ1)

with * the convolution in R1. Since f is real, Ai is selfadjoint . We have by Parseval’s relation

(f̂i ∗ v, v)L2(R1) =

+∞
∫

−∞

(f̂i ∗ v)v̄dξ1 =

+∞
∫

−∞

˜(f̂i ∗ v) ¯̃vdx1

= (2π)1/2

+∞
∫

−∞

fi|ṽ|2dx1 ≥ (2π)1/2m(v, v)L2(R1).

Applying this to functions v supported in [−κ, κ] we obtain for the restriction of Ai to L2(−κ, κ)

(again denoted by Ai)

(Aiv, v)L2(−κ,κ) ≥ (k2 − κ2 + k2m)(v, v)L2(−κ,κ).

Integrating (2.4) over [ih, x2] we obtain

û(·, x2) = cos (Ki(x2 − ih)) û(·, x2) + K−1
i sin Ki(x2 − ih)

∂û

∂ξ1
(·, x2)

+

x2
∫

ih

K−1
i sin(Ki(x2 − x′

2))r̂(·, x′

2)dx′

2, (2.5)


