
Journal of Computational Mathematics, Vol. 24, No. 6, 2006, 693–710.

ALTERNATING PROJECTION BASED
PREDICTION-CORRECTION METHODS FOR STRUCTURED

VARIATIONAL INEQUALITIES *1)

Bing-sheng He

(Department of Mathematics, Nanjing University, Nanjing 210093, China)

Li-zhi Liao

(Department of Mathematics, Hong Kong Baptist University, Hong Kong, China)

Mai-jian Qian

(Department of Mathematics, California State University, Fullerton CA 92834, USA)

Abstract

The monotone variational inequalities VI(Ω, F ) have vast applications, including opti-

mal controls and convex programming. In this paper we focus on the VI problems that

have a particular splitting structure and in which the mapping F does not have an explicit

form, therefore only its function values can be employed in the numerical methods for solv-

ing such problems. We study a set of numerical methods that are easily implementable.

Each iteration of the proposed methods consists of two procedures. The first (prediction)

procedure utilizes alternating projections to produce a predictor. The second (correction)

procedure generates the new iterate via some minor computations. Convergence of the

proposed methods is proved under mild conditions. Preliminary numerical experiments for

some traffic equilibrium problems illustrate the effectiveness of the proposed methods.
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1. Introduction

A variational inequality problem, denoted by VI(Ω, F ), is to find a vector u∗ ∈ Ω such that

(u − u∗)T F (u∗) ≥ 0, ∀ u ∈ Ω, (1.1)

where Ω is a nonempty closed convex subset of R
l, and F is a mapping from R

l into itself. In

this paper, we consider the VI problem with the following structure:

(x∗, y∗) ∈ D,

{

(x − x∗)T f(x∗) ≥ 0,

(y − y∗)T g(y∗) ≥ 0,
∀ (x, y) ∈ D, (1.2)

where

D = {(x, y)|x ∈ X , y ∈ Y, Ax + By = b}, (1.3)

X and Y are given nonempty closed convex subsets of R
n and R

p, respectively, A ∈ R
m×n and

B ∈ R
m×p are given matrices, b ∈ R

m is a given vector, f : X → R
n and g : Y → R

p are

monotone operators. Problem (1.2)-(1.3) is a special case of the general VI problem (1.1), which
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has numerous important applications, including applications in the fields of optimal controls

and convex programming (see [1, 6, 7]).

Since in practice such problems usually involve large number of variables, numerical methods

that can make use of the decomposed structure of problem (1.2)-(1.3) can greatly save computer

storage as well as computing time. A number of decomposition methods have been proposed,

for examples, see [3, 4, 5, 7, 8, 9, 15].

In many applications, the mapping f (resp. g) cannot be expressed explicitly and for a given

x ∈ X (resp. y ∈ Y), the function value f(x) (resp. g(y)) can only be obtained via certain

procedures. Given a variable value, the evaluation of f or g can be costly and time-consuming,

and sometimes may pose social or political impact (such as posing toll charges to evaluate the

traffic flow), therefore should not be taken lightly. In such applications, efficient numerical

methods which only employ function values are highly desired.

Among all the existing decomposition methods which achieve linear convergence, in each

iteration a subproblem equivalent to an implicit projection calls to be solved, as illustrated

below. Solving each subproblem usually requires numerous function evaluations. In this paper

we present a set of decomposition methods that involve only explicit projections, therefore

require only one function evaluation in each iteration, yet they also yield linear convergence.

The numerical experiments presented in Section 6 illustrate the effectiveness of the methods.

The proposed methods are motivated by the existing proximal alternating directions meth-

ods (abbreviated as PADMs) proposed in [15]. We briefly describe the PADMs as follows: First,

by attaching a Lagrange multiplier vector λ ∈ R
m to the linear constraint Ax +By = b, the VI

problem (1.2)-(1.3) is converted into the following equivalent non-constrained form:

(x∗, y∗, λ∗) ∈ W ,







(x − x∗)T (f(x∗) − AT λ∗) ≥ 0,

(y − y∗)T (g(y∗) − BT λ∗) ≥ 0,

(λ − λ∗)T (Ax∗ + By∗ − b) ≥ 0,

∀ (x, y, λ) ∈ W (1.4)

where

W = X × Y × R
m. (1.5)

We denote VI problem (1.4)-(1.5) by VI(W , Q), where

Q(w) = Q(x, y, λ) =





f(x) − AT λ

g(y) − BT λ

Ax + By − b



 . (1.6)

Given a triplet wk = (xk, yk, λk) ∈ X × Y × R
m, the PADMs generate a new iterate

w̃k = (x̃k, ỹk, λ̃k) ∈ X × Y × R
m via the following general procedure:

Given (xk, yk, λk) ∈ W, first find an x̃k ∈ X such that

(x′ − x̃k)T {f(x̃k) − AT [λk − β(Ax̃k + Byk − b)] + r(x̃k − xk)} ≥ 0, ∀ x′ ∈ X . (1.7)

Then find a ỹk ∈ Y such that

(y′ − ỹk)T {g(ỹk) − BT [λk − β(Ax̃k + Bỹk − b)] + s(ỹk − yk)} ≥ 0, ∀ y′ ∈ Y. (1.8)

Finally, update λ̃k via

λ̃k = λk − β(Ax̃k + Bỹk − b). (1.9)

Here β > 0 is a given penalty parameter of the linear constraint Ax+By−b = 0. The coefficients

r > 0 and s > 0 in formulas (1.7) and (1.8) respectively are referred to as proximal parameters.

The method is convergent by taking wk+1 = w̃k (for a proof see [12]).


