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Abstract

We study the smoothing method for the solution of generalized semi-infinite optimiza-

tion problems from (O. Stein, G. Still: Solving semi-infinite optimization problems with

interior point techniques, SIAM J. Control Optim., 42(2003), pp. 769–788). It is shown

that Karush-Kuhn-Tucker points of the smoothed problems do not necessarily converge to

a Karush-Kuhn-Tucker point of the original problem, as could be expected from results

in (F. Facchinei, H. Jiang, L. Qi: A smoothing method for mathematical programs with

equilibrium constraints, Math. Program., 85(1999), pp. 107–134). Instead, they might

merely converge to a Fritz John point. We give, however, different additional assumptions

which guarantee convergence to Karush-Kuhn-Tucker points.
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1. Introduction

This article studies a numerical solution method for so-called generalized semi-infinite opti-

mization problems. These problems have the form

GSIP : minimize f(x) subject to x ∈M

with

M = { x ∈ R
n| gi(x, y) ≤ 0 for all y ∈ Y (x), i ∈ I }

and

Y (x) = { y ∈ R
m| vℓ(x, y) ≤ 0, ℓ ∈ L }.

All defining functions f, gi , i ∈ I = {1, ..., p}, vℓ , ℓ ∈ L = {1, ..., s}, are assumed to be real-

valued and d times continuously differentiable on their respective domains with d ≥ 2. The

inclusion of equality constraints in the definitions of M and Y (x) as well as of i−dependent

index sets Y (x) is straightforward and will not be considered here for the ease of presentation.

As opposed to a standard semi-infinite optimization problem SIP, the possibly infinite index

set Y (x) of inequality constraints is x-dependent in a GSIP. For surveys about standard semi-

infinite optimization we refer to [6, 8, 17, 18], whereas the state of the art in generalized semi-

infinite optimization is covered in [26, 27, 28] and in the monography [24]. The latter also

contains a wide range of applications and the historical background of generalized semi-infinite

programming.
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A numerical solution method for a subclass of these problems was presented in [26]. It

bases on a smoothing method which is also known from [2] for mathematical programs with

complementarity constraints and which is essentially an interior point approach for a degenerate

part of the problem. Section 2 explains the main features of this method.

In [26] we have shown that under weak assumptions global solutions of the smoothed prob-

lems converge to a global solution of GSIP, and that stationary points in the sense of Fritz John

converge to a Fritz John point of GSIP. From the results in [2] it could be expected that without

further assumptions even Karush-Kuhn-Tucker points of the smoothed problems converge to a

Karush-Kuhn-Tucker point of GSIP.

The aim of the present article is to show that in the setting of GSIP this is actually not the

case. We give, however, different additional assumptions which guarantee the convergence to a

Karush-Kuhn-Tucker point. These are the contents of Sections 3 and 4.

2. Preliminaries

This section reviews the main ideas of the smoothing method from [26].

2.1. The Reduction Ansatz for convex lower level problems

The n-parametric so-called lower level problems of GSIP are given by

Qi(x) : max
y∈Rm
imize gi(x, y) subject to y ∈ Y (x)

with i ∈ I. Note that the upper level decision variable x is a parameter of the lower problem,

and that the upper level index variable y is the decision variable of the lower level. For each

parameter value x we can study the optimal value and the optimal points of the optimization

problem Qi(x). More precisely, associated with Qi(x) are its optimal value function

ϕi(x) =







sup
y∈Y (x)

gi(x, y), if Y (x) 6= ∅

−∞, else,

and, in case of solvability, its solution set mapping

Y i
⋆ (x) = {y ∈ Y (x)| gi(x, y) = ϕi(x)}.

It is easily seen that M and the set {x ∈ R
n| ϕi(x) ≤ 0, i ∈ I} coincide.

Assumption 2.1. For all x ∈ R
n the lower level problems Qi(x), i ∈ I, are convex, that is,

the functions −gi(x, ·), vℓ(x, ·), ℓ ∈ L, are convex on R
m.

Assumption 2.2. For all x ∈ R
n the sets Y (x) are bounded and satisfy the Slater condition,

that is, there exists some y⋆ such that vℓ(x, y
⋆) < 0 for all ℓ ∈ L.

Under Assumptions 2.1 and 2.2 the sets Y i
⋆ (x) are nonempty and locally bounded around

each x̄ ∈ R
n ([10]), so that the optimal value functions ϕi(x) = maxy∈Y (x) gi(x, y), i ∈ I,

are well-defined and continuous on R
n ([10]). In particular the feasible set M is closed.

For the derivation of stationarity conditions we concentrate on the nontrivial case of a point

x̄ from the boundary ∂M of M . Let I0(x̄) = {i ∈ I| ϕi(x̄) = 0} denote the set of active indices


