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Abstract

Implicit Runge-Kutta method is highly accurate and stable for stiff initial value prob-
lem. But the iteration technique used to solve implicit Runge-Kutta method requires lots
of computational efforts. In this paper, we extend the Parallel Diagonal Iterated Runge-
Kutta(PDIRK) methods to delay differential equations(DDEs). We give the convergence
region of PDIRK methods, and analyze the speed of convergence in three parts for the
P-stability region of the Runge-Kutta corrector method. Finally, we analysis the speed-up
factor through a numerical experiment. The results show that the PDIRK methods to
DDE:s are efficient.
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1. Introduction

We consider here a stiff initial value problem (IVP) method that is highly accurate and
stable. This method is used as a corrector method, which achieves convergence by using parallel
iteration techniques. In the selection of a suitable corrector method, we are automatically led
to the classical implicit Runge-Kutta methods such as the Radau ITA methods. These methods
fulfill the requirements of accuracy and stability and belong to the family of best correctors for
stiff problems. For the iteration technique we select the PDIRK (Parallel Diagonally Implicit
RK) approach developed in [1] that solves the RK corrector by diagonally implicit iteration
using s processors for ODEs, where s being the number of stages of the corrector.

In this paper, we use a so-called step-parallel method. Here, a step-parallel method is
understood to be a method that computes solution values at different points on the-axis simul-
taneously. Such methods are usually based on the iterative solution of an implicit step-by-step
method. A further level of parallelism for ODE was introduced in [2,3,4] by making use of
the PDIRK iteration technique. The conventional approach of iteration is that it iterates until
convergence at a particular point is achieved, before advancing to the next point along the
t-axis, while step-parallel methods already start the iteration process at the next point before
the iteration at the preceding point converged. In the literature, we consider a step-parallel
iteration of Runge-Kutta method for solving initial value problems (IVPs) of delay differential
equations (DDEs):

y'(t) = fly@),y(t —7)), t>0, y(t)=g(t), t<0, (L.1)

where f, g denote given functions and are both sufficiently smooth. 7 is a given constant with
T > 0.
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2. The Iteration Scheme
Consider initial value problems of ordinary differential equations(ODEs):

y'(t) = f(y(t), >0, y(0)=yo. (2.1)

To avoid the tensor product in our formulations, we consider equation(1.1) and (2.1) as
scalar equations. Using the General Linear Method notation of Butcher, the Runge-Kutta
corrector formula for the ODE (2.1) reads(cf.[5, 6]) as follows:

Y, = EY, 1 + hAF(Y,), n=1,2--,N, (2.2)

here, h(= t,—tn—1) denotes the step-size, the matrix A = (a;;) contains the RK parameters, and
F(Y,,) contains the derivative values (f(Y,.;)), where Y, ;,i = 1,2, --- , s, denote components of
the stage vector Y;,. In this paper we assume that (2.2) possesses s implicit stages and that the
last stage corresponds to the step point. The first s — 1 stage components represent numerical
approximations at the intermediate points t,,—1 + ¢;h, i =1,2,--- ;s — 1, where ¢ = (¢;) = Ae,
¢s = 1, e being the vector with unit entries. We define Yy = yoe. The matrix E in (2.2) is of
the form:

0 1
0 1

E =
0 0 1

Applying the method (2.2) to (1.1), we obtain the Runge-Kutta correction formula for
DDEs:

Y, = EY, 1 + hAF(Y,,va), n=1,2--,N. (2.3)

Where F(Y,,v,) contains the derivative values (f(Yy,i,Vn,i)). If 7 = mh with integer m, we
let [6]

| g(etp—1 +ch—er), n <m,

ne { Yom, n>m. (24)

We approximate the solution Y, of (2.3),(2.4) by successive iterates Y,

iteration scheme:

satisfying the

YTSO) to be defined by the predictor formula,
YD —hDF(Y D), ) = EYY, 4+ B[A - DIF(YU™D v,  j=1,2,---,T,

[ gletn—1 +ch—eT), n < m, (2.5)
= Y,fli(,z)fm), n>m,

YD =yk@) s k), n=1,2,---,N.

The number of iterations k(n) performed at the point ¢, is defined by the condition that
for j = k(n), the v, s numerically satisfy the corrector equation (2.3),(2.4). The k(n) depends
on t, (see(3.34)). But in a theoretical analysis, however, it seems not feasible to allow the
parameter k(n) to be an arbitrary function of n, so while deriving convergence results, k(n) is
taken as a constant. The matrix D = (d;) is assumed to be a diagonal matrix with s positive
diagonal entries, so the formula (2.5) possesses parallelism across the method because of the
diagonal structure of the matrix D. We also call the method (2.5) PDIRK method for DDEs.

Introducing the step index i = n + j, and writing the correction formula (2.5) as

Y —hDFY ™, v P ) = YV + hA - DIF(v D v (2.6)

—m



