A NOTE ON THE CONSTRUCTION OF SYMPLECTIC SCHEMES FOR SPLITABLE HAMILTONIAN

$$H = H^{(1)} + H^{(2)} + H^{(3)} *1)$$

Yi-fa Tang

(LSEC, ICMSEC, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China)

Abstract

In this note, we will give a proof for the uniqueness of 4th-order time-reversible symplectic difference schemes of 13th-fold compositions of phase flows $\phi^t_{H^{(1)}}, \phi^t_{H^{(2)}}, \phi^t_{H^{(3)}}$ with different temporal parameters for splitable hamiltonian $H = H^{(1)} + H^{(2)} + H^{(3)}$.

Key words: Time-Reversible symplectic scheme, Splitable hamiltonian.

For a hamiltonian system

$$\frac{dZ}{dt} = J\nabla H(Z), \quad Z \in \mathbb{R}^{2n} \tag{1}$$

where $J = \begin{bmatrix} O & -I_n \\ I_n & O \end{bmatrix}$, I_n is $n \times n$ identity matrix, $H: R^{2n} \to R$ is a smooth function and ∇ is the gradient operator, the symplectic difference schemes should be exclusively employed to integrate it [1, 2]. One can get this kind of schemes of any high order, however the high-order derivatives of the hamiltonian H must be used or a system of high-order algebraic equations must be solved [2]–[4], and usually the symplectic schemes are implicit, unless the hamiltonian H is special, say, variable-separable [1, 2, 5], symplectically separable (nilpotent) [6] or splitable (we call a hamiltonian splitable if it can be split into several parts, and each part can be explicitly integrated) [7]–[9]. On the other hand, people have already utilized the technique of composing lower-order symplectic scheme for several times with different stepsizes to get higher-order one [7]–[10]. Comparatively, this is an economic and practical way, especially, when the hamiltonian is splitable [11]–[16].

For a splitable hamiltonian [11]-[16]

$$H(p,q) = H^{(1)}(p,q) + H^{(2)}(p,q) + H^{(3)}(p,q), \quad p,q \in \mathbb{R}^n,$$
 (2)

if ϕ_1^t , ϕ_2^t , ϕ_3^t are the phase flows of $H^{(1)}(p,q)$, $H^{(2)}(p,q)$, $H^{(3)}(p,q)$ respectively, the following schemes **S1** and **S2** are symplectic difference schemes of order 1 and 2 respectively [7]–[9]:

Scheme 1 (S1): 1st-order symplectic scheme

$$\widetilde{Z} = \Phi^t(Z) = \phi_3^t \circ \phi_2^t \circ \phi_1^t(Z), \tag{3}$$

Scheme 2 (S2): 2nd-order symplectic scheme

$$\widetilde{Z} = \Psi^{t}(Z) = \phi_{1}^{\frac{t}{2}} \circ \phi_{2}^{\frac{t}{2}} \circ \phi_{3}^{t} \circ \phi_{2}^{\frac{t}{2}} \circ \phi_{1}^{\frac{t}{2}}(Z). \tag{4}$$

^{*} Received Novermber 1, 1999.

¹⁾ This research is partially support by Special Funds for Major State Basic Research Projects of China (No. G1999032801-10 and No. G1999032804), and by the knowledge innovation program of the Chinese Academy of Sciences and a grant (No. 19801034) from National Natural Sciences Foundation of China.

90 Y.F. TANG

Explicitly, scheme **S2** is time-reversible (a scheme G^{τ} is said to be *time-reversible* if $G^{-\tau} \circ G^{\tau} = identity[17]-[19]$).

We have known that via multi-fold composition (with different parameters) of a time-reversible symplectic scheme (**RESS**), one can get a higher-order **RESS**. Precisely for instance, if ϕ^t is a 2nd-order **RESS** for Hamiltonian H, then $\phi^{\beta t} \circ \phi^{\alpha t} \circ \phi^{\beta t}$ is a 4th-order **RESS** for Hamiltonian H, here $\alpha = \frac{-^3\sqrt{2}}{2-^3\sqrt{2}}$, $\beta = \frac{1}{2-^3\sqrt{2}}$. We have known on the other hand, if ϕ^t and ψ^t are the phase flows of Hamiltonians $H^{(1)}$ and $H^{(2)}$ respectively, then $\psi^{\frac{t}{2}} \circ \phi^t \circ \psi^{\frac{t}{2}}$ is a 2nd-order **RESS** for Hamiltonian $H = H^{(1)} + H^{(2)}$. Therefore

$$\psi^{\frac{\beta t}{2}} \circ \phi^{\beta t} \circ \psi^{\frac{\beta t}{2}} \circ \psi^{\frac{\alpha t}{2}} \circ \phi^{\alpha t} \circ \psi^{\frac{\alpha t}{2}} \circ \psi^{\frac{\beta t}{2}} \circ \phi^{\beta t} \circ \psi^{\frac{\beta t}{2}} \\ = \psi^{\frac{\beta t}{2}} \circ \phi^{\beta t} \circ \psi^{\frac{\gamma t}{2}} \circ \phi^{\alpha t} \circ \psi^{\frac{\gamma t}{2}} \circ \phi^{\beta t} \circ \psi^{\frac{\beta t}{2}}$$

$$(5)$$

(here $\gamma=\alpha+\beta=\frac{1-^3\sqrt{2}}{2-^3\sqrt{2}}$) is a 4-order **RESS** for Hamiltonian $H=H^{(1)}+H^{(2)}$ [7]–[9]. Conversely, it is easy to prove (see *Corollary 1* in the *Proof of Theorem* later): if $\psi^{\lambda t}\circ\phi^{\mu t}\circ\psi^{\nu t}\circ\phi^{\delta t}\circ\psi^{\nu t}\circ\phi^{\mu t}\circ\psi^{\lambda t}$ (ϕ^t and ψ^t are the phase flows of Hamiltonians $H^{(1)}$ and $H^{(2)}$ respectively) is a 4th-order **RESS** for Hamiltonian $H=H^{(1)}+H^{(2)}$, then $\lambda=\frac{1}{2(2-^3\sqrt{2})},\ \mu=\frac{1}{2-^3\sqrt{2}},\ \nu=\frac{1-^3\sqrt{2}}{2(2-^3\sqrt{2})},\ \delta=\frac{-^3\sqrt{2}}{2-^3\sqrt{2}}.$

Similarly, we know: if ϕ_1^t , ϕ_2^t and ϕ_3^t are the phase flows of Hamiltonians $H^{(1)}$, $H^{(2)}$ and $H^{(3)}$ respectively, then $\phi_1^{\frac{t}{2}} \circ \phi_2^{\frac{t}{2}} \circ \phi_3^t \circ \phi_2^{\frac{t}{2}} \circ \phi_1^{\frac{t}{2}}$ is a 2nd-order **RESS** for Hamiltonian $H = H^{(1)} + H^{(2)} + H^{(3)}$. Therefore,

$$\phi_{1}^{\frac{\beta t}{2}} \circ \phi_{2}^{\frac{\beta t}{2}} \circ \phi_{3}^{\beta t} \circ \phi_{2}^{\frac{\beta t}{2}} \circ \phi_{1}^{\frac{\beta t}{2}} \circ \phi_{1}^{\frac{\alpha t}{2}} \circ \phi_{2}^{\frac{\alpha t}{2}} \circ \phi_{3}^{\frac{\alpha t}{2}} \circ \phi_{2}^{\frac{\alpha t}{2}} \circ \phi_{1}^{\frac{\alpha t}{2}} \circ \phi_{2}^{\frac{\beta t}{2}} \circ \phi_{1}^{\frac{\beta t}{2}} \circ \phi_{2}^{\frac{\beta t}{2}} \circ \phi_{1}^{\frac{\beta t}{2}} \circ \phi_{1}^{\frac{$$

(here $\gamma = \alpha + \beta = \frac{1-^3\sqrt{2}}{2-^3\sqrt{2}}$) is a 4th-order **RESS** for Hamiltonian $H = H^{(1)} + H^{(2)} + H^{(3)}$ [7, 8]. But how about the converse proposition? Is it true? That's just what we are to answer. For this purpose we establish the following theorem:

Theorem 1. If

$$\widetilde{Z} = \Theta^t(Z) = \phi_{n_7}^{\delta t} \circ \phi_{n_6}^{\alpha t} \circ \phi_{n_5}^{\beta t} \circ \phi_{n_4}^{\gamma t} \circ \phi_{n_3}^{\lambda t} \circ \phi_{n_2}^{\mu t} \circ \phi_{n_1}^{\nu t} \circ \phi_{n_4}^{\mu t} \circ \phi_{n_3}^{\lambda t} \circ \phi_{n_4}^{\gamma t} \circ \phi_{n_5}^{\beta t} \circ \phi_{n_6}^{\alpha t} \circ \phi_{n_7}^{\delta t}(Z) \quad (7)$$

where $n_1, n_2, n_3, n_4, n_5, n_6, n_7 \in \{1, 2, 3\}$ and any two neighbouring numbers are different, is a 4th-order RESS for Hamiltonian $H = H^{(1)} + H^{(2)} + H^{(3)}$, then $\delta = \alpha = \gamma = \frac{1}{2(2^{-3}\sqrt{2})}$, $\beta = \frac{1}{2^{-3}\sqrt{2}}$, $\lambda = \frac{1^{-3}\sqrt{2}}{2(2^{-3}\sqrt{2})}$, $\mu = \frac{-^3\sqrt{2}}{2(2^{-3}\sqrt{2})}$, $\nu = \frac{-^3\sqrt{2}}{2^{-3}\sqrt{2}}$. That is to say, Θ^t is actually 3-fold composition of Ψ^t with different coefficients: $\Theta^t = \Psi^{\kappa_2 t} \circ \Psi^{\kappa_1 t} \circ \Psi^{\kappa_2 t}$ with $\kappa_1 = \frac{-^3\sqrt{2}}{2^{-3}\sqrt{2}}$ and $\kappa_2 = \frac{1}{2^{-3}\sqrt{2}}$.

For the proof of Theorem 1, at first let's prepare something.

If ϕ_2^t , ϕ_3^t are the phase flows of hamiltonian $H^{(2)}$, $H^{(3)}$ respectively, then we can write the following expansion:

$$\begin{split} \phi_3^{\beta t} &\circ \phi_2^{\gamma t} \circ \phi_3^{\lambda t} \circ \phi_2^{\mu t} \circ \phi_3^{\nu t} \circ \phi_2^{\mu t} \circ \phi_3^{\lambda t} \circ \phi_2^{\gamma t} \circ \phi_3^{\beta t} \\ &= I + tJ\nabla\{2(\gamma + \mu)H^{(2)} + (2\beta + 2\lambda + \nu)H^{(3)}\} \\ &+ \frac{t^2}{2}J\{2(\gamma + \mu)H^{(2)} + (2\beta + 2\lambda + \nu)H^{(3)}\}_{zz}J\nabla\{2(\gamma + \mu)H^{(2)} + (2\beta + 2\lambda + \nu)H^{(3)}\} \\ &+ \frac{4(\gamma + \mu)^3}{3}t^3J[\nabla H^{(2)}]_{zz}[J\nabla H^{(2)}]^2 \end{split}$$