ON THE CONVERGENCE OF PROJECTOR-SPLINES FOR THE NUMERICAL EVALUATION OF CERTAIN TWO-DIMENSIONAL CPV INTEGRALS*1)

Elisabetta Santi M.G. Cimoroni (Department of Energetica, University of L'Aquila - 67040 Roio Poggio-L'Aquila, Italy)

Abstract

In this paper, product formulas based on projector-splines for the numerical evaluation of 2-D CPV integrals are proposed. Convergence results are proved, numerical examples and comparisons are given.

Key words: 2-D Cauchy principal value integral, Tensor product, projector-splines.

1. Introduction

We consider the numerical evaluation of Cauchy principal value integrals of the form

$$J(f;z,\vartheta) = \int_{a}^{b} \int_{\bar{a}}^{\bar{b}} w_1(x) w_2(\tilde{x}) \frac{f(x,\tilde{x})}{(x-z)(\tilde{x}-\vartheta)} \,\mathrm{d}x \,\mathrm{d}\tilde{x}$$
 (1.1)

where $z \in (a, b)$, $\vartheta \in (\tilde{a}, \tilde{b})$, the weight functions $w_1(x)$, $w_2(\tilde{x})$ and the function f are such that $J(f; z, \vartheta)$ exists.

The numerical evaluation of the integrals (1.1) are of two types: global and local. The global methods have generally to be used when f is differentiable with 'small' derivatives. However, one of the difficulties wich occur in the use of global methods usually based on orthogonal polynomials, lies in the fact that a greater accuracy in approximating (1.1) requires to increase the number of the nodes coinciding with the zeros of above polynomials. Therefore, when the weight functions w_1 , w_2 are different from the classical Jacobi weights, the evaluation of the nodes requires a considerable computational effort.

Besides, global methods are generally not appropriate when f behave 'badly' in some subinterval of $[a,b] \times [\tilde{a} \times \tilde{b}]$, then for such integrals a local method with no restriction on the choice of the nodes would have to be preferred.

In this paper we will consider an approximation function of the form:

$$Q_{N\bar{N}}f(x,\tilde{x}) = \sum_{i=1-k}^{N-1} \sum_{\bar{i}=1-k}^{N-1} (\lambda_{i\bar{i}}\tilde{\lambda}_{i\bar{i}}f) B_{i\bar{i}k}(x,\tilde{x})$$
(1.2)

in which the operators $\lambda_{i\bar{\imath}}$, $\tilde{\lambda}_{i\bar{\imath}}$ are such that $Q_{N\bar{N}}$ is the tensor product of two one-dimensional projector-splines and we will examine a cubature rule for (1.1), considering that it can be written in the form

$$J(f;z,\vartheta) = \int_{a}^{b} \int_{\bar{a}}^{\bar{b}} w_{1}(x)w_{2}(\tilde{x}) \frac{f(x,\tilde{x}) - f(z,\vartheta)}{(x-z)(\tilde{x}-\vartheta)} dx d\tilde{x} + f(z,\vartheta) \int_{a}^{b} \frac{w_{1}(x)}{x-z} dx \int_{\bar{a}}^{\bar{b}} \frac{w_{2}(\tilde{x})}{\tilde{x}-\vartheta} d\tilde{x},$$

$$(1.3)$$

^{*} Received August 17, 1998; Final revised October 15, 2000.

¹⁾Work sponsored by M.U.R.S.T. and C.N.R. of Italy.

and then, it can be approximated by

$$J_{N\bar{N}}(f;z,\vartheta) = \int_{a}^{b} \int_{\bar{a}}^{\bar{b}} w_{1}(x)w_{2}(\tilde{x}) \frac{Q_{N\bar{N}}f(x,\tilde{x}) - Q_{N\bar{N}}f(z,\vartheta)}{(x-z)(\tilde{x}-\vartheta)} dx d\tilde{x} + f(z,\vartheta) \int_{a}^{b} \frac{w_{1}(x)}{x-z} dx \int_{\bar{a}}^{\bar{b}} \frac{w_{2}(\tilde{x})}{\tilde{x}-\vartheta} d\tilde{x}.$$

$$(1.4)$$

This paper is organized as follows. In Section 2 we will present some preliminaries and summarize numerical thechiques to be used; in Section 3 we will prove the convergence of the integration rules here proposed and we give conditions for their uniform convergence for (ζ, ϑ) belonging to any closed interval contained in $(a, b) \times (\tilde{a}, \tilde{b})$. Finally, in Section 4, some numerical results are presented and compared with those obtained by using the method proposed in [2].

2. Preliminaries

Given $\Omega := [a, b] \times [\tilde{a}, \tilde{b}]$, let $\{Y_n\}$ and $\{\tilde{Y}_{\bar{n}}\}$ be two sequences of partitions of I := [a, b] and $\tilde{I} := [\tilde{a}, \tilde{b}]$ respectively:

$$Y_n := \{ a = y_{0n} < y_{1n} < \dots < y_{nn} = b \}, \quad \tilde{Y}_{\bar{n}} := \{ \tilde{a} = \tilde{y}_{0\bar{n}} < \tilde{y}_{1\bar{n}} < \dots < \tilde{y}_{\bar{n}\bar{n}} = \tilde{b} \}.$$

If $h_i = y_{i+1} - y_i$ and $\tilde{h}_{\bar{i}} = \tilde{y}_{\bar{i}+1} - \tilde{y}_{\bar{i}}$, we define

$$\delta_1 = \min_{1 \le i \le n} h_{i-1}, \quad \delta_2 = \min_{1 \le \bar{i} \le \bar{n}} \tilde{h}_{\bar{i}-1}.$$
 (2.1)

Let $\overline{\Delta}_1$, $\overline{\Delta}_2$ be the norms of the partitions Y_n and $\tilde{Y}_{\bar{n}}$ respectively, given by

$$\overline{\Delta}_1 = \max_{1 \le i \le n} h_{i-1}, \quad \overline{\Delta}_2 = \max_{1 \le i \le \bar{n}} \tilde{h}_{\bar{i}-1}. \tag{2.2}$$

We say that the collection of partitions $\{Y_n \times \tilde{Y}_{\tilde{n}} : n = n_1, n_2 ...; \tilde{n} = \tilde{n}_1, \tilde{n}_2, ...\}$ of Ω , is quasi-uniform (q.u.) if there exists a positive constant A such that

$$\frac{\overline{\Delta}_i}{\delta_j} \le A, \quad 1 \le i, j \le 2 \tag{2.3}$$

and we assume that

$$\overline{\Delta}_1 \to 0$$
 as $n \to \infty$, $\overline{\Delta}_2 \to 0$ as $\tilde{n} \to \infty$. (2.4)

Let $\{d_{in}\}_{1}^{n-1}$, $\{\tilde{d}_{\bar{\imath}\bar{n}}\}_{1}^{\bar{n}-1}$ be two sequences of positive integers with $d_{in} \leq k-1$, $\tilde{d}_{\bar{\imath}\bar{n}} \leq \tilde{k}-1$, where k, \tilde{k} are assigned integers greater than 1, and let π be the non-decreasing sequence $\{x_i\}_{0}^{N}$ obtained from Y_n by repeating y_{in} exactly d_i times (thus $N = \sum_{i}^{n-1} d_i + 1$); similarly, let $\tilde{\pi}$ be the non-decreasing sequence $\{\tilde{x}_i\}_{0}^{\bar{N}}$ obtained from $\tilde{Y}_{\bar{n}}$ (thus $\tilde{N} = \sum_{\bar{i}}^{\bar{n}-1} \tilde{d}_{\bar{i}} + 1$). We denote with $S_{\pi k}$ and $\tilde{S}_{\bar{\pi}\bar{k}}$ the polynomial spline spaces of order k and k respectively. We shall call a sequence of spline spaces $\{S_{\pi k} \times \tilde{S}_{\bar{\pi}\bar{k}}\}$ q.u. if they are based on a sequence of q.u. partitions.

We can suppose, without loss of generality, $k = \tilde{k}$.

It is well known that considering the extended partitions $\pi_e = \{x_i\}_{i=1-k}^{N+k-1}$ and $\tilde{\pi}_e = \{\tilde{x}_i\}_{i=1-k}^{\tilde{N}+k-1}$, the normalized B-splines $\{B_{ik}(x)\}_{i=1-k}^{N-1}$ and $\{\tilde{B}_{\bar{i}k}(\tilde{x})\}_{\bar{i}=1-k}^{\bar{N}-1}$ constitue a basis compactly supported for $S_{\pi k}$ and $\tilde{S}_{\bar{\pi}k}$ respectively. By the above univariate normalized B-splines we may generate a collection of bivariate B-splines, defined on $[x_{1-k}, x_{N+k-1}] \times [\tilde{x}_{1-k}, \tilde{x}_{N+k-1}]$,

$$B_{i\bar{\imath}k}(x,\tilde{x}) = B_{ik}(x)\tilde{B}_{\bar{\imath}k}(\tilde{x}).$$