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Abstract

Two least-squares mixed finite element schemes are formulated to solve the initial-
boundary value problem of a nonlinear parabolic partial differential equation and the con-
vergence of these schemes are analyzed.
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1. Introduction

A large number of physical phenomena are modeled by partial differential equations or
systems of parabolic type in an evolutionary or elliptic type at steady state. It is frequently
the case that a good approximation of some function of the gradient of the solution to the
differential equation (which may represent, for example, a velocity field or electric field ) is at
least as important as an approximation of the solution itself ( which may represent, respectively,
a pressure or an electric potential). Many mixed element methods compute simultaneously the
solution and the gradient of the solution with the same or higher order of accuracy than the
solution itself. The mixed methods were described and analyzed by many authors. It has been
observed that in many cases mixed finite element methods give better approximations for the
flux variable than classical Galerkin methods. However, a mixed formulation is more difficult to
be handled and, in general, is more expensive from a computational point of view because it loses
positive definite property. Recently, there has been an increasing interest in the applications
of least-squares finite element algorithms to various problems steady or evolutionary. Many
works on least-squares finite element schemes and their applications to various boundary value
problems of elliptic equations or systems have been done and some systematic theories on
ellipticity and error estimates have been also estabished, e.g., see [2], [3], [7]-[12], [15]-[18],
[22] and [23]. In recent years, the least-squares finite element methods have been extended to
time-dependent problems, e.g., see [13], [21] and [25], and several numerical results showed that
least-squares finite element methods are also very effective to evolutionary problems. However,
the theory on convergence of least-squares finite element methods for time-dependent problems
has not been obtained.

The purpose of this paper is to analyze the least-squares mixed finite element methods for
nonlinear parabolic problems written as a first-order system. Let 2 be an open bounded domain
in R?, d = 2,3, with a Lipschitz continuous boundary I'. As a model problem, we consider the
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following initial-boundary value problem of a nonlinear parabolic equation

d
(@) e~ X gnlag(w)gs) =flu), nQ 0<t<T;

d 1.1
(b) u=0, on I'p; > aij(u)%l/i =0, on I'y; 0L<t< T, (1.1)
i,j=1 !
(c) u=ug, in, t=0,

where the coefficients c(v) > ¢, > 0 is a continuous positive functions, A(v) = (a;;(v))axaq is a
uniformly positive definite matrix function and v = (v1,---,v4) " is the unit vector normal to
[n. In general, the coefficients ¢(v), a;;(v) (1 <4,j < d) and f(v) are also dependent upon
(z,t). For convenient sake and without loss of the generality, we assume that these coefficients
only depend upon the unknown function.

The nonlinear parabolic problem (1.1) may be rewritten as a nonlinear first-order system of
form

~—

c(uw) 2 —dive = f(u), inQ, 0<t<T;
c=Au)Vu, inQ, 0<t<T;

u=0, onl'p; o-v=0, only; 0<t<T;
d u=ugy, inQ, t=0,

’ (1.2)
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where V is the gradient operator and div is the divergence operator.

The paper is organized in the following way. Two least-squares mixed finite element schemes
and their split parallel forms are formulated in section 2 and the theory on convergence of these
schemes are established in section 3.

2. Least-Squares Mixed Element Schemes for Nonlinear Parabolic
Problem

In this section, we formulate two least-squares mixed element schemes to solve (1.2). We
consider a first-order mixed system equivalent to the nonlinear parabolic first-order system (1.2)

a U _ =0, inQ, 0<t<T;

~

( o

) Z(A(w)o) —Vw =0, inQ, 0<t<T;

(¢  cluyw—dive = f(u), inQ, 0<t<T; (2.1)
(d u=0, onl'p; o-v=0, onTy; 0<t<T;

(e) wu=wp, inQ, t=0,

where A denotes the inverse matrix of A.

We introduce usual Sobolev spaces W*?(Q) (k> 0, 1 < p < oo) defined on  with usual
norms || - [[ywrs (o) as in [1]. Let H*(Q) = W¥*2(Q). We define inner products in L?(2) and
(L2(Q))4 as follows

d
(u,v) = /QU(fv)v(fv)dw, Vuv e L¥(Q), (ow) =) (onw), Vowe (L)%

i=1

and the spaces H = {w € (L?(Q2))%; divw € L}(Q), w-v=00nTy.},S = {ve H}(Q);v =
OonTp.}. Let Ty, and Ty, be two families of finite element partitions of the domain 2, where
h, and h, are mesh parameters, which generally denote the largest of diameters of elements in
partitions Tp_ and T}, respectively. In practical applications, the partitions Tp_ and T}y, are
same. Here, we wish to emphasize their independence in calculation and convergence analysis.
Construct the finite element function spaces Hy,, C H on Tj_ and S,, C S on Tp,. Let



