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Abstract

In this study we will consider moving mesh methods for solving one-dimensional time
dependent PDEs. The solution and mesh are obtained simultaneously by solving a system
of differential-algebraic equations. The differential equations involve the solution and the
mesh, while the algebraic equations involve several geometrical variables such as 6 (the
tangent angle), U (the normal velocity of the solution curve) and T’ (tangent velocity). The
equal-arclength principle is employed to give a close form for 7. For viscous conservation
laws, we prove rigorously that the proposed system of moving mesh equations is well-posed,
in the sense that first order perturbations for the solution and mesh can be controlled by the
initial perturbation. Several test problems are considered and numerical experiments for
the moving mesh equations are performed. The numerical results suggest that the proposed
system of moving mesh equations is appropriate for solving (stiff) time dependent PDEs.
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1. Introduction

Many methods have been proposed for adapting the mesh to achieve spatial resolution in the
solution of partial differential equations. In addition to the capability of concentrating sufficient
points about regions of rapid variation of the solution, a satisfactory mesh equation should be
simple, easy to program, and reasonably insensitive to the choice of its adjustable parameters.
The earliest work on adaptive techniques, based on moving finite element method (MFEM) was
done by Miller [14, 12]. The gradient-weighted moving finite element (GWMFE) method was
introduced recently by Miller as a geometrically motivated improvement over his earlier moving
finite element methods. In [4, 5], Carlson and Miller reported on the design of the GWMFE
codes and their extensive numerical trials on a variety of difficult PDEs and PDE systems. The
equidistribution principle, first introduced by de Boor [7] for solving boundary value problems
for ordinary differential equations, involves selecting mesh points such that some measure of the
solution error is equalized over each subinterval. It has turned out to be an excellent principle
for formulating moving mesh equations. In fact, a number of moving mesh methods have been
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developed, and almost all are based at some point on an equidistribution principle, see, e.g.,
[1, 2,9, 15, 17].

In this work, we present a new method for generating numerical grids. The main motivation
of this research is from the fundamental work of Hou, Lowengrub and Shelley [10] in which a
new formulation was proposed for computing the motion of fluid interfaces with surface tension.
One of the key ideas in their paper involves using a geometrical frame of reference so that the
tangent angle of the interface 6§ and its length L, rather than its x and y position are the
dynamical variables. With the #-L formulation, the corresponding numerical methods have
no high-order time step stability constraints that are usually associated with surface tension.
The equal-arclength principle of de Boor is also employed in [10]. This idea enables them to
express a geometrical variable T' (tangent velocity) entirely in terms of § and L. The problems
investigated in [10] are of periodic solutions and therefore the #-L formulation is an appropriate
setting. In fact, the §-L approach is useful not only for problems with periodic solutions but
also for problems with Neumann boundary conditions. However, for commonly used Dirichlet
boundary conditions the #-L formulation may not be well-posed due to the unspecified boundary
conditions for . In this case, we propose to solve a system of parametrized differential equations
for x = z(a,t) and @ = u(z(a,t),t). A system of differential-algebraic equations (DAEs) will
be obtained, which involve z, 4 and some geometrical variables. This system, together with the
given boundary conditions for z and @, will be solved numerically.

The paper is organized as follows. In §2, we introduce the differential-algebraic formulations
based on geometrical variables. The well-posedness of the numerical approach will be briefly
investigated in §3. Some detailed numerical procedures will be discussed in §4. Numerical
experiments will be carried out in the final section.

2. The Formulation
We consider again a single time evolving PDE in 1-D
ur = F(z,u,t) (2.1)

with appropriate boundary and initial conditions, where F is some nonlinear spatial differential
operator. As described in [13], we convert equation (2.1) into the normal form
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Now u is allowed to be an evolving oriented 1-D manifold immersed in two dimensions. Implicit
in this geometrical treatment is the assumption that a choice of the ratio between the horizontal
and vertical scales has been made and fixed.

The motion of interface is reposed in terms of its tangent angle 6(«, t) and its local arclength
derivatives o(a,t) = y/x% + @2. Derivations have been given elsewhere (e.g. [10]), but for
completeness it is included here. The tangent angle to the curve I, 6, is the angle between s
and the z-axis. It satisfies

s(a.0) = (

U= (z4,us) n= (2.2)

To(x,t) Gala,t)
o(a,t)’ o(a,t)

) = (cosf(a,t), sinf(a,t)). (2.3)
The unit vector in the normal direction, n, is perpendicular to s and satisfies

n(a,t) = (—sinf(a,t), cosf(a,t)). (2.4)



