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Abstract

In this paper, from the view of point of macro- and meso- scale coupling, we discuss
the mechanical behaviour for subdivided periodic elastic structures of composite materials.
A multiscale numerical method and its error estimate are reported. Finally, numerical
experiments results supports strongly the theoretical ones presented in the paper.
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1. Introduction

For a kind of elastic structures of composite materials of which the geometric and physical
parameters are of some periodicity, e.g., common laminated plate and shell, and fibre reinforced,
particle reinforced, and woved composite materials and so forth , we can regard them as the
periodic structures with a unit cell.

Generally speaking, it is extremely difficult to compute directly the above elastic structures
by using usual FEM, due to the complicated geometric configurations and highly oscillatory
physical parameters. To overcome this crucial difficulty, I.Babuska, J.L.Lions et al. [1] pro-
posed early homogenization method. However, homogenization method can only reflect the
macroscopic average properties of elastic structures, but does not describe the local mechanical
behaviour. To this end, J.L.Lions and O.A.Oleinik et al. [2,5] obtained complete asymptotic
expansions for the Dirichlet boundary value problems of the second order elliptic equation and
the linear elastic structures of composite materials in perforated domains, respectively. Jun-zhi
Cui and Li-qun Cao et al. [6,7] obtained the complete asymptotic expansions for the Dirichlet
boundary value problems of the second order elliptic equation and the linear elastic system
with rapidly oscillating coefficients in domains formed by entirely basic configurations, respec-
tively. In present paper, we will propose the multiscale FEM for subdivided elastic structures
of composite materials.

The organization of this paper is as follows. In section 2 , we shall obtain multiscale asymp-
totic expansion and truncation error estimates for subdivided elastic structures of composite
materials. Section 3 is devoted to the FE computation of periodic solutions N, (§) and the

modified homogenized linear elastic system U 0 (z) . In section 4 , a multiscale FE scheme and
total error estimates are given. Finally, numerical experiments results are reported and are
coincident with the theoretical ones.

In what follows summation over repeated Latin indices from 1 to n is assumed. If the vectors
u, v or matrices A, B have elements belonging to a Hilbert space H with a scarlar product (-, )%,

we use the following notations:
1/2
(w00 = (v, ull = (a0

(4, B)n = (aij, bij)a, Al = (4, A1/
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and write u,v € H; A, B € H instead of u,v € H2, A,B € H".

2. Multiscale Asymptotic Expansion and Truncation Error Estimates

~ Without loss of generality, we discuss only the elastic structure as shown in Figure 2.1. Let
D=0 U, XN =0, O = | ez+ Q) be the elastic composite structures formed
z€T,

by entirely basic configurations, T, = {z € Z" : (2 + Q) CQ},Q@ ={{: 0< & <1, j=
1, 2, DY n}

To begin with, introduce the following notations:

Displacement boundary T, force boundary Ty, 9Q = I, Ty, mes(T’,) > 0, T*
o0 N 0Q: , body force f = (fi,--- fa)l; boundary force ¢(z) = (¢1,- - ¢n)’; strains ;5 =
%(gg—j’ + gZ—Z), stresses 0;;; constitutive relation o;; = CF (z, £)epg, Where

(3

APt — aPQ(g)) if e

Cpq:(oqu(ﬂfag)): Bra — b;jq) it e, (2.1)
p,q,i,j:l,lel-l--n I
ololo|o o o i
“"eo|lo|@|e®| \T Mo eyt \T,
o ot0 0 o | oFilite o,
NI ®| o i,
r, r,
Figure 2.1 Figure 2.2

Definition 2.1. We say that a family of matrices AP1(£) = API(¢), ¢ =e'w, pq=
1,2,---n, belongs to class E(ui1, u2), if their elements aff(f) are bounded measurable functions
satisfying the following conditions:

(1) aif(§) are 1-periodic in &

(2) .

?
aif () = af} (§) = a,;(&); (2.2)
(3) ramipnip < aff (ONipNja < H2NipNip

where 0, 15 an arbitray symmetric matriz with real elements, py, p2 =const> 0
Let

bf;'l = A(S,-,,(qu + [,L(Sij(qu + ,uéiqéjp (23)
where A >0, p > 0 are the Lame constants, d;; is the Kronecker notation.
Equations of equilibrium : —0,,,=f,, p=1,2---n, in ze€Q, (2.4)
e, — .07 =0 (om, 5@y py seq (2.5)
o T Ox, e’ Oz, ’ '
where —
€ _ UE(ZL“) T € Ql
Usle) = { w(w) x € (2.6)
Displacement boundary condition: U®(z)=u’(z) = a(z) zel, (2.7)
Force boundary condition: o0¢.(U%) =o(w) = l/poqaa—w = ¢(x) zel, (2.8)
Zq
Interface conditions : u*(z)|p« = w(x)|r=, 0-(u°)|px = —o(w)|p- (2.9)




