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Abstract
This paper is concerned with the numerical solution of delay differential equations(DDEs).
We focus on the error behaviour of Runge-Kutta methods for stiff DDEs. We investigate
D-convergence properties of algebraically stable Runge-Kutta methods with three kinds of
interpolation procedures.
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1. Introduction

When considering the applicability of numerical methods for the solution of the delay differ-
ential equation (DDE) y'(t) = f(¢,y(t),y(t — 7)), it is necessary to analyze the error behaviour
of the methods. In fact, many papers have investigated the local and global error behaviour of
DDE solvers (cf.[1,2,14]). These error analyses are based on the assumption that the function
f(t,y,z) satisfies Lipschitz conditions in both the last two variables. They are suitable for
nonstiff DDEs because the Lipschitz constants are moderate-sized. However, they can not be
applied to stiff DDEs. For example, consider Hutchinson’s equation (cf.[9])

Lu(z,t) = a83—22u(:c,t) +u(z,t)[1 —u(z,t —7)], t>0,z€(0,1),
ule,t) = o), te[-7,00z € (0,1), (11)
u(0,t) = u(l,t) =0,t > —,
where a > 0 is the diffusion coefficient, ¢(x,t) is continuous. We transform the partial DDE
(1.1) into a system of ordinary DDE by discretising the space variable x into (N 4 2) discrete
values (N > 0), with a constant stepsize in space, Az = 1/(N + 1), so that z; = jAz,j =
0,1,---,N + 1. Using the standard central difference operator to approximate the Laplacian
we obtain a system with

-2 1 y1(2) y1(t) (1 = y1(t — 7))
L g - ys (1) Yo (1)(L — s (t — 7))
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(1.2)
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where y;(t) denotes the approximation to u(xj,t),j = 1,2,---, N. In this case, the Lipschitz
constant L of the function f(t,y,z) with respect to y will contain negative powers of the
meshwidth Az in space. As a consequence, L will be very large for fine space grids, and the
error estimates based on L are not realistic. On the other hand, the one-sided Lipschitz constant
« is only moderate. Hence estimates based on «a are often considerably more realistic than that
based on L. In fact, Frank et al. introduced the concept of B-convergence for Runge-Kutta
methods applied to stiff ODEs, and established the following basic criteria (cf.[6,7,8])

algebraic stability + diagonal stability + stage order p = B-convergence with order p.

Burrage and Hundsdorfer [4] further discussed the conditions which guarantee that a Runge-
Kutta method has order one higher than the stage order. Li [13] further extended these studies
to general linear methods and to initial value problems in Hilbert spaces and established a more
efficient theory. Recently, the concept of D-convergence [16] for DDEs, which is a generalization
of the concept of B-convergence, was introduced. Zhang and Zhou [16] discussed D-convergence
of a class of Runge-Kutta methods, and some first and second order D-convergent methods were
found. We proved in [10] that the order of D-convergence equals the consistent order in classical
sense for A-stable one-leg methods with linear interpolation. In this paper, we further discuss
D-convergence of algebraically stable Runge-Kutta methods. We will discuss D-convergence of
general linear methods in other paper.

2. Runge-Kutta Methods for DDEs

Let (-,-) be an inner product on C™ and ||-|| the corresponding norm. Consider the following
nonlinear equation
y'(t) = f(ty(t),y(t —7)), =0, (2.1)
y(t) = ¢1(t)7 t <0, '

where 7 is a positive delay term , ¢; is a continuous function, and f : [0, +00) x CN xCN — C¥,
is a given mapping which satisfies the following conditions:

Re(u; — ua, f(t,u1,v) — f(t,uz,v)) < allug —usl|?, > 0,up,us,v € CV, (2.2)
||f(t,u,'l)1) - f(t,U,Uz)“ S /6““1 - ’1)2“, t Z 07”7“17’”2 € CN7 (23)

where a and 3 are real constants. In order to make the error analysis feasible, we always assume
that the problem (2.1) has a unique solution y(¢) which is sufficiently differentiable and satisfies
3
1299 < o,
Remark 2.1. When g = 0, the above problem class has been used widely in stiff ODEs
field (cf.[5,12]).
Now we consider the adaptation of Runge-Kutta methods to (2.1). Let (A,b,¢) denote
a given Runge-Kutta method with s x s matrix A = (a;;) and vectors b = (by,---,bs)T,c =
(e1,+-+,cs)T. In this paper we always assume that 0 < ¢; < 1(i = 1,---,s). Let h > 0 be a given
stepsize and yo = ¢1(0). Define gridpoints ¢,,(n = 0,1,2,---) by ¢, = nh. Then approximation
Ynt1 t0 Y(tny1)(n =0,1,2,---) are defined by

=1
j=1

The argument )7j(n) is defined by Yj(n) = ¢1(tn + cjh — 7) (whenever t,, + cjh — 7 < 0), and
denotes an approximation to y(t, + c¢;h — 1) (whenever ¢, + ¢;h — 7 > 0) which is obtained by



