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Abstract

A parallel chaotic multisplitting method for solving the large sparse linear complemen-
tarity problem is presented, and its convergence properties are discussed in detail when
the system matrix is either symmetric or nonsymmetric. Moreover, some applicable re-
laxed variants of this parallel chaotic multisplitting method together with their convergence
properties are investigated. Numerical results show that highly parallel efficiency can be
achieved by these new parallel chaotic multisplitting methods.
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1. Introduction

We consider the linear complementarity problem LCP(M,q): Find a z € R” such that
Mz+q >0, z >0, X (Mz+q) =0,

where M = (m;;) € R*"*™ and ¢ = (¢;) € R" are given real matrix and vector, respectively.
This problem arises in various scientific computing areas such as the Nash equilibrium point of
a bimatrix game (e.g., Cottle and Dantzig[4] and Lemke[12]) and the free boundary problems of
fluid mechanics (e.g., Cryer[8]). There have been a lot of researches on the approximate solution
of the linear complementarity problem LCP(M,q). For details one can refer to Cottle, Pang
and Stone[6] and references therein. These researches presented efficient iterative methods and
systematic convergence theories for solving the linear complementarity problem in the sequential
computing environment.

To solve the linear complementarity problem in the parallel computing environment, Machida,
Fukushima and Ibaraki[14] recently presented a multisplitting iterative method by making use
of the matrix multisplitting technique introduced in O’Leary and White[17]. Under suitable
conditions about the weighting matrices and the multiple splittings, Machida, Fukushima and
Ibaraki[14] and Bai[l] proved the convergence of this method for symmetric and nonsymmet-
ric linear complementarity problems, respectively. This method possesses good parallel com-
putational properties, and it is much suitable for implementing on the synchronous parallel
multiprocessor systems. It can achieve high parallel efficiency provided the workloads among
the processors of the multiprocessor system are well balanced. When such a balance can be
obtained, the individual processor is then ready to contribute towards their update of the global
iterate almost at the same time, which, in turn, minimizes idle time. However, such a balance

* Received September 8, 1998.
DSupported by the National Natural Science Foundation of China. (19601036) and Subsidized by the Special
Funds for Major State Basic Research Projects G1999032800.



282 7.7. BAL

of workload is not always available in many applications, and the mutual wait among the pro-
cessors of the multiprocessor system is usually inevitable, which, hence, decreases the parallel
efficiency of the multisplitting method.

To avoid loss of time and efficiency in processor utilization, in this paper, we propose a
chaotic multisplitting iterative method for solving parallely the linear complementarity problem
LCP(M,q). In the implementation of this method on the multiprocessor system, each processor
can carry out its local iterate a varying number of steps until a mutual phase time is reached
when all processors are ready to contribute towards the global iteration. Hence, the synchronous
wait among different processors is greatly decreased while the efficient numerical computation
on each processor is largely increased. This, therefore, makes the new chaotic multisplitting
method achieve high parallel efficiency. Under the same restrictions on the weighting matrices
and the multiple splittings as in [14] and [1], we establish the convergence theories of this new
method for both the symmetric and nonsymmetric linear complementarity problems. Moreover,
for the convenience of practical implementations, some relaxed explicit variants of the above
chaotic multisplitting method are presented, and their convergence for both the symmetric and
nonsymmetric linear complementarity problems are discussed in detail as well. At last, with
a lot of numerical results, we show that the new chaotic multisplitting methods are feasible
and efficient for parallely solving the linear complementarity problems on the multiprocessor
systems.

2. Preliminaries

First of all, we briefly review some necessary notations and concepts in [1] and [14]. A
matrix 4 = (a;;) € R**" is called a monotone matrix if it is nonsingular and satisfies A= > 0;

an M-matrix if it is a monotone matrix and satisfies a;; < 0 for ¢ # j, i,5 = 1,2,---,n; an
H-matrix if its comparison matrix (A) is an M-matrix, where (4) = ((a;;)) € R"*™ is defined
by (as) = |ag| for i = 1,2,---,n, and (a;;) = —|a;j| for i # j, i, =1,2,---,n; an H-matrix

if it is an H-matrix having positive diagonal elements; and a Q-matrix if the LCP(A,b) has
a solution for any b € R™. A sufficient condition for A € R®™*" to be a Q-matrix is that
either A is an Hy-matrix[1] or A is a strictly copositive matrix [6]. In the former case, the
LCP(A,b) always has a unique solution for every b € R™. For a given matrix A € R**™, let
F,G € R**™ be such that A = F' + G. Then (F, Q) is called a splitting of the matrix A. The
splitting (F,G) is called a convergent splitting if the spectral radius of the matrix (F~1G) is
less than one, i.e., p(F~!G) < 1. It is called an M-splitting if F is an M-matrix and G < 0;
an H-splitting if (F) — |G| is an M-matrix; an H-compatible splitting if (A) = (F) — |G|; and a
Q-splitting if F' is a Q-matrix. In particular, the splitting (F,G) is called an H-splitting and
H -compatible splitting if it is an H-splitting and H-compatible splitting, respectively, with
F an Hi-matrix. Let Ny = {0,1,2,---} and {A,}pen, be a sequence of matrices in R**"™.
Then we call A,(p € Ng) positive definite uniformly in p if there exists a positive constant c,
independent of p, such that 27 4,2 > ¢zT2 holds for all z € R™.

The following lemmas, proved in [20] and [9] respectively, will frequently be used in the
sequel.

Lemma 2.1. [20] Let A € R*™"™ have nonpositive off-diagonal entries. Then A is an
M-matriz if and only if there exists a positive vector u € R™ such that Au > 0.

Lemma 2.2. [9] Let A € R"*™ be an H-matriz, D = diag(A), and A= D — B. Then:

(a) A is nonsingular;

(b) |[A7Y < (A)7L; and

(c) |D| is nonsingular and p(|D|~*|B|) < 1.

When the system matrix M € R®*" is symmetric, associated with the LCP(M,q) is the
following quadratic programming problem QP(M,q):



