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Abstract

An NGTN method was proposed for solving large-scale sparse nonlinear programming
(NLP) problems. This is a hybrid method of a truncated Newton direction and a modified
negative gradient direction, which is suitable for handling sparse data structure and pos-
sesses Q-quadratic convergence rate. The global convergence of this new method is proved,
the convergence rate is further analysed, and the detailed implementation is discussed in
this paper. Some numerical tests for solving truss optimization and large sparse problems
are reported. The theoretical and numerical results show that the new method is efficient
for solving large-scale sparse NLP problems.
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1. Introduction

Consider the following NLP problem
minimize flz)
subject to gi(z) >0, jeJ={1,...,m}. (1.1)

where the function f: R® — R' and g; : R* — R', j € J are twice continuously differentiable.
In particular, we discuss the case, where the number of variables and the number of constraints
in (1.1) are large and second derivatives in (1.1) are sparse.

There are some methods which can solve large-scale problems, e.g. Lancelot in [2] and
TDSQPLM in [9]. But they can not take advantage of sparse structure of the problem. A new
efficient method which is called NGTN method is studied in [11] for solving large-scale sparse
NLP problems. In this method, a new nonlinear system which is equivalent to Kuhn-Tucker
conditions of the problem is developed. NCP function is used in the nonlinear system such that
the nonnegativity of some variables is avoided. The truncated Newton method is used to solve
the nonlinear system. In order to guarantee the global convergence, a robust loss function is
chosen as a merit function and a modified negative gradient direction is used to descrease the
merit function. This NGTN method is easy to carry out, possesses Q-quadratic convergence
rate, and is suitable for solving large-scale sparse NLP problems.

In this paper, the global convergence of NGTN method is proved, Q-quadratical convergence
rate is further analysed, and the detailed implementation is discussed. In addition, NGTN
algorithm is used for solving the sparse truss problems, the dimensions of which range from
183 to 827, and large problem with 70000 variables and 40000 constraints. The theoretical
and numerical results show that NGTN method is efficient for solving large-scale sparse NLP
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problems. This paper is organized as follows. In Section 2 we give the construction of a NGTN
algorithm for solving the large-scale problem (1.1). We discuss the global convergence of NGTN
in Section 3. The detailed implementation and numerical results of NGTN are given in Section
4.

2. NGTN Algorithm

2.1. Notations
In order to describe the NGTN algorithm, let

L(z,u) = f(z) - ngj(fv) (2.1)

be the Lagrangian function of problem (1.1), let 7, L(z,u) and 572, L(x,u) denote the gradient
and Hessian of L(z,u) at x, respectively. With this notation, a pair (z*,u*) is called a Kuhn-
Tucker pair of (1.1) if (z*,u*) satisfies the following Kuhn-Tucker conditions:

VaL(z*,u*) =0, gj(z*) —t; =0, j € J,
ujt; =0, uj >0, 1720, j € J.

The Kuhn-Tucker conditions are equivalent to the system

d)j(uat) jed

where ¢ : R*2™ — RF2™m o — (2, u,t) and
bj(u,t) = Jud + 13 — (uj + t;) (2.3)
is a NCP-function (see [3]).

The Jacobian matrix of ¢(z) is
V2, L(z,u) —AT(x) 0

Q(z) = —A(x) 0 I, : (2.4)
0 By (u,t)  Po(u,t)
where
Alz) = (voi(@),...,vgmz))l € R™*",
By(u,t) = diag(a¢1aitlt, o 8¢gt(:, N

(Azy, Ady) is called a truncated solution, if the following equation
Hk —A{ Az bkl
L T = 2.
< —Ak —Dk AU ka ( 5)
is solved such that the inequality
Hk —A{ Az bkl
=z - - < .
I ( i - )\ aa b ) < (2.6)

holds for some 7 > 0. Here
Al = (vgj(a)jes, € RZ™ Ty ={jed: P> e or €] <e)  (27)



