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Abstract

Consider solving the Dirichlet problem of Helmholtz equation on unbounded region
R?\TI" with T" a smooth open curve in the plane. We use simple-layer potential to construct
a solution. This leads to the solution of a logarithmic integral equation of the first kind for
the Helmholtz equation. This equation is reformulated using a special change of variable,
leading to a new first kind equation with a smooth solution function. This new equation
is split into three parts. Then a quadrature method that takes special advantage of the
splitting of the integral equation is used to solve the equation numerically. An error analysis
in a Sobolev space setting is given. And numerical results show that fast convergence is
clearly exhibited.
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1. Introduction

The mathematical tratement of the scattering of time-harmonic acoustic or electromagnetic
waves by an infinitely long semi-cylindrical obstacle with a smooth open contour cross-section
[' C R? leads to unbounded boundary value problems for the Helmholtz equation [3]

Aw+k*w = 0, in R2\T,
w = g,onl, (1.1)
%—1;’ —dkw = o(%), r=|z| = oo,

with wave number k& > 0.
In the single-layer approach one seeks the solution in the form

w(z) = / Ko(|z — y)p(y)dsy,y € RA\T, (12)

where ds, is the element of arc length, and the fundamental solution to the Helmholtz equation
is given by
1

Ko(lz —y]) ==
in terms of the Hankel function Hél) of order zero and of the first kind. It is known that

HM = Jo + i, (1.4)
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with Bessel function of order zero Jy and Neumann function of order zero Ny

Jo(z) =% Gr(3)™
n=0 0 0 (71)n+1 (15)
N[)(Z) = %(IH% + C)Jo(Z) + % 2_:1{ Z_:l %} (n)? (%)Zn

where C' = 0.57721 - - - is the Euler’s constant.
The single-layer potential (1.2) solves the unbounded Dirichlet problem provided the density
 is a solution of the integral equation

/F Ko(|z — y)p(y)ds, = g(x),z €T, (1.6)

This integral equation can be shown to be uniquely solvable provided the homogeneous Dirichlet
problem for the case of domain bounded by open arc I' admits only the trivial solution, that
is, if the wave number £ is not a Dirichlet eigenvalue for the negative Laplacian for the domain
bounded by I'. These eigenvalues are discrete and accumulate only at infinitely [3].

Let I" have a parametrization

r(z) = (£(x),n(x), -1 <z <1, (1.7)

with
' ()] = {[€' @) + ' (@)]}F £0,-1<z <1, (1.8)

To simplify the analysis, assume r(z) is C*°. Following [2, 14], we make the additional change
of variable
t = arccos(z), -1 <z < 1. (1.9)

The equation (1.6) can now be written as
——/ u(r)K(t,7)dr = f(7),0 <t <, (1.10)
0
with
) t),
u(t) = p(a(t))|r' (cost)| sint, (1.11)
)=g

K(t,7) = —wKo(|a(t) — a(7)]).

Note that a € C*°. From the expansions (1.5) we see that the kernel K (¢,7) can be written in
the form

K(t,7) = (1 + K,(t,7)| cost — cosT|?) 1n(§| cost — cosT|) + Ka(t,7), (1.12)

where
Ki(t,7) = — JO(TLZSZ - Z(EZ)T||)2_ Lz, (1.13)
Ks(t,7) = K(t,7) — (1 4+ Ky (t,7)| cost — cos T|*) ln(§| cost —cosT|),t # T. (1.14)

With the assumption on r(z), it can be shown that K;(¢,7), K2(t, 7) are infinitely differentiable
on t and 7 and also 2m-periodic and even with respect to each variable. Furthermore, we have
the diagonal terms

K, (t,t) = £ (cos t)],
Ky(t,t) = =% — C — In(&e|r'(cos t))).

24

(1.15)



