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Abstract
In this paper, we have constructed a high accurate difference scheme based on the ENN

scheme [1]. The new scheme has 5th-order accuracy in smooth regions and can keep the
essencially non-oscillatory property.
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1. Introduction

In the paper [1] , where Zhang Hanxin et al. presented the nonoscillatory 3rd-order ENN
difference scheme. The idea of ENN scheme is to compare the 1st-order difference and 2nd-order
difference to attain 3rd-order accurate scheme and to avoid spurious oscillations near shocks.
However the ENN scheme has certain drawbacks. One problem is only 3rd-order accuracy
even in the very smooth regions. Another is to use a lot of logical statements which affect the
convergence rate and the efficiency of parallel computing.

Recently, G.-S. Jiang and C.-W. Shu developed a 5th-order weighted ENO scheme [2] based
on the third-order accurate difference scheme in the flux form. We found that the third-order
accurate ENO scheme given in [2] with r=3 is the same as the ENN scheme without the limiters.
Naturally, the ENN scheme would be expanded to 5th-order accurate scheme by using the idea
of deriving the 5th-order WENO difference scheme.

In this paper, we have constructed the higher accuracy difference scheme based on the ENN
scheme. The new scheme has 5th-order accuracy in smooth regions and can keep the essencially
non-oscillatory property.

We tested the new scheme’s accuracy by using a linear initial problem and tested its non-
oscillatory property by using a nonlinear initial problem. At last, we applied the new scheme
to compute the problem of shock-boundary-layer interaction. Numerical results showed that
the new scheme is efficient.

2. ENN Scheme and Several High Order Accuracy Central Schemes
Consider a scalar conservative hyperbolic equation
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where f is a flux function and can be splitted into two parts, i.e. f(u) = f*(u) + f~(u) and
dft(u)/du > 0 and df (u)/du < 0. In this paper we define f*(u) = £(f(u) £ au) and
a = maz|f'(u)| for one-dimensional equation. The semi-discrete conservative difference scheme
can be written as follows
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where the numerical flux h; 1 = hj++l +ho.
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(2) 4th-order accurate central schemes [3]
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(3) 5-order accurate central scheme
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3. Numerical Method

For simplicity, we show only the positive part of the splitted flux, and the negative part of
the splitted flux are symmetric with respect to z; 41

From above equations, it can be seen that the combinal coefficients in (8) from (3) are



