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Abstract

This paper presents a new method for solving the basic problem in the “model-
trust region” approach to large scale minimization: Compute a vector & such that
ta"Hz + ¢’z = min, subject to the constraint [|z]]; < a. The method is a
combination of the CG method and a projection and contraction (PC) method.
The first (CG) method with zyp = 0 as the start point either directly offers a
solution of the problem, or—as soon as the norm of the iterate greater than a, —it
gives a suitable starting point and a favourable choice of a crucial scaling parameter
in the second (PC) method. Some numerical examples are given, which indicate
that the method is applicable.

Key words: Trust region problem, Conjugate gradient method, Projection and
contraction method.

1. Introduction

Let H be a given n X n symmetric positive semidefinite matrix and ¢ € R". In
this paper we consider the following quadratic programming with a simple quadratical

constraint )
ExTHx + 'z = min (1)

st |z|2 < a,

where the parameter ¢ is prescribed. This problem occurs frequently in trust region
method for unconstrained optimization [1]. A number of approaches for solving (1)
have been proposed in the literature [2,3,6,12-16]. One technique is to approximate
a Lagrange multiplier A by Newton’s method. The approximation of this parameter
may be quite delicate, however, and involves the computation of a sequence of singular
value decompositions [5]. Since the SVD is too costly for large matrices, the method
is applicable only for small problems. The advanced interior point methods could also
be used to solve problem (1) and seem attractive, because one can show that these
methods converge at a polynomial rate, see e.g. [11]; however, each iteration of an
interior point method has to solve a system of linear equations and therefore is rather
expensive.

For large and sparse problems, Golub and von Matt [6] presented a method, which
uses a series incomplete decompositions and yields a sequence of upper and lower bounds
on the Lagrange multiplier and enables them to compute an approximate solution x
from these bounds via solving a system of linear equations.
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Recently, we proposed some projection and contraction (PC) methods [7,8,9] for
solving a class of linear variational inequalities, which can be applied to solve problem
(1). One of the PC method is rather inexpensive and very simple to realize, because each
iteration of the method consists essentially of a matrix vector product and the method
does not need to solve any systems of linear equations. However, the performance of
the PC method strongly depends on the scaling of H and c.

In this paper, we show—in theory as well as for some numerical examples—that
the Lagrange multiplier must be small if the PC method converges slowly. We will
pay particular attention to the problem of ill-conditioning and propose an alternative
simple (CG-PC) method for solving problem (1). The method start with z° = 0, if
a > ||[H*¢||, the CG method solves the problems, otherwise, as soon as a ||z| > a,
we get the information about a proper scaling parameter for H and ¢, and switch to
use some simple projection and contraction (PC) methods [9]. For large trust region
problems, the presented method is as simple as the Goldstein’s fundamental projection
method [4], in addition, as the numerical results will show, it is almost as powerful as
the method proposed by Golub and von Matt [6].

1.1. Outline and notation

The equivalent linear projection equation is given in Section 2. In Section 3 we
briefly quote some convergence facts of the CG method [10] and the PC method [7,8,9].
In Section 4 we study the convergence behaviour of the PC method and analyze how
to treat ill-conditioned problems. Further details of our method are given in Section 5.
In Section 6 we present some numerical results.

We use the following notations. A superscript such as in ¥ refers to specific vectors
and k usually denotes the iteration index. By ||v|| we denote the Euclidean norm of
some vector v, by ||v]|¢ and the norm (vT'Gv)'/? induced by a positive definite matrix
G, and by ||H|| we denote the spectral norm Apax(H) of some symmetric matrix H.
HT denotes the pseudoinverse of a matrix H. Finally, by z* we denote the solution of
the problems.

1.2. Basic observations

An immediate observation regarding problem (1) tells us, if the dimensions of the
matrix H are small and a singular value decomposition of H can be computed in
moderate time, then for a > ||H " c|| the solution x = H "¢ can be computed from the
singular value decomposition of H, and for a < ||H"¢| problem (1) is equivalent to
finding a value A > 0 such that

'(H+ M) 2c—da2=0. (2)

(Given such ), the solution z is given by z = —(H + AI)~!c.) The derivative with
respect to A of the right hand side is —2x” (H +AI) ™3z, and is thus computable directly
from the singular value decomposition of H = VISV by observing that (H + AI)~! =
V(% + pI)~'V. Thus some modifications of Newton’s method seem appropriate for
solving (1), see e.g. [13]. In the following we will assume that H is large and sparse,
and does not allow a singular value decomposition in moderate time.

2. The Equivalent Projection Equation
The Lagrange function of problem (1) is
L(z,\) = a" He 4 2"z + A(a'z — a?), (3)

which is defined on R™ x R4. The Kuhn-Tucker Theorem of convex programming tells
us that z* is a solution of (1) if and only if there exists a A* > 0, such that (z*, \*)



