FOURIER-LEGENDRE PSEUDOSPECTRAL METHOD FOR THE NAVIER-STOKES EQUATIONS *1)

Jian Li

(LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing, 100080, China)

Abstract

In this paper, we construct a Fourier-Legendre pseudospectral scheme for the unsteady Navier-Stokes equations. This method easily deals with nonlinear terms and saves computational time. The strict error estimations are given.

Key Words: Navier-Stokes equations, Fourier-Legendre pseudospectral method, error estimation.

1. Introduction

The mixed spectral and pseudospectral methods are successful to numerically solve the semi-periodic problems of incompressible fluid flows (see [1-6]). This paper is devoted to the Fourier-Legendre pseudospectral method for the two-dimensional unsteady Navier-Stokes equations with semi-periodic boundary condition. This method is performed easily and has the same high accuracy as spectral method has.

Let $x = (x_1, x_2)^T$ and $\Omega = I_1 \times I_2$ where $I_1 = \{x_1/-1 < x_1 < 1\}$, $I_2 = \{x_2/-\pi < x_2 < \pi\}$. We denote by U(x, t) and P(x, t) the speed and the pressure. Let $\partial_t = \frac{\partial}{\partial t}$ and $\partial_j = \frac{\partial}{\partial x_j}$ (j = 1, 2). We consider the Navier-Stokes equations as follows

$$\begin{cases}
\partial_t U + (U \cdot \nabla)U - \nu \nabla^2 U + \nabla P = f, & \text{in } \Omega \times (0, T], \\
\nabla \cdot U = 0, & \text{in } \Omega \times (0, T], \\
U(x, 0) = U_0(x), & P(x, 0) = P_0(x), & \text{in } \Omega,
\end{cases}$$
(1.1)

where $\nu > 0$ is the kinetic viscosity, $U_0(x)$ and $P_0(x)$ are the initial values. Assume that all functions in (1.1) have the period 2π for x_2 . We also suppose that U satisfies the homogeneous boundary conditions in the x_1 -direction

$$U(-1, x_2, t) = U(1, x_2, t) = 0, \quad \forall x_2 \in I_2.$$

Besides, to fix P(x, t), we require

$$\mu(P) \equiv \int_{\Omega} P(x,t)dx = 0, \quad \forall t \in [0,T].$$

^{*} Received September 1, 1996.

¹⁾ Project supported by the National Natural Science Foundation of China.

226 L. LI

We denote by (\cdot, \cdot) and $\|\cdot\|$ the usual inner product and norm of $L^2(\Omega)$, etc.. Let $C_{0,p}^{\infty}(\Omega)$ be the subset of $C^{\infty}(\Omega)$, whose elements vanish at $x_1 = \pm 1$ and have the period 2π for $x_2 \in I_2$. $H_{0,p}^1(\Omega)$ is the closure of $C_{0,p}^{\infty}(\Omega)$ in $H^1(\Omega)$.

2. The Scheme

Let M and N be positive integers. Assume that there exist positive constants c_1 and c_2 such that

$$c_1 N \leq M \leq c_2 N$$
.

We denote by \mathcal{P}_M the space of all polynomials with degree $\leq M$, defined on I_1 . Let

$$V_M = \{v(x_1) \in \mathcal{P}_M / v(-1) = v(1) = 0\}.$$

Set l be integer, and

$$\tilde{V}_N = \operatorname{Span}\{e^{ilx_2}/|l| \le N\}.$$

Let V_N be the subset of \tilde{V}_N , containing all real-valued functions. Define

$$V_{M,N} = (V_M \times V_N)^2, \quad S_{M-1,N} = \{v \in \mathcal{P}_{M-1} \times V_N / \mu(v) = 0\}.$$

Let $P_{M,N}^1: (H_{0,p}^1(\Omega))^2 \longrightarrow V_{M,N}$ be the projection operator such that for any $u \in (H_{0,p}^1(\Omega))^2$,

$$(\nabla (u - P_{M,N}^1 u), \nabla v) = 0, \quad \forall v \in V_{M,N}.$$

While $P_{M-1,N}: L^2(\Omega) \longrightarrow \mathcal{P}_{M-1}(I_1) \times V_N$ is the orthogonal projection such that for any $u \in L^2(\Omega)$,

$$(u - P_{M-1,N}u, v) = 0, \quad \forall v \in \mathcal{P}_{M-1} \times V_N.$$

Obviously, if $u \in L^2(\Omega)$ and $\mu(u) = 0$, then $\mu(P_{M-1,N}u) = 0$.

Now, let $\{x_1^{(j)}, \omega^{(j)}\}$ be the nodes and weights of Gauss-Lobatto integration, i.e.,

$$\begin{split} x_1^{(0)} &= -1, x_1^{(M)} = 1, x_1^{(j)} (j = 1, \cdots, M - 1) \text{ zeroes of } L_M', \\ \omega^{(j)} &= \frac{2}{M(M+1)(L_M(x_1^{(j)}))^2}, j = 0, \cdots, M, \end{split}$$

where L_M is the Legendre polynomial of degree M. Let $h = \frac{2\pi}{2N+1}$ be the mesh size for x_2 . Define

$$\Omega_{M,N} = \{ (x_1^{(j)}, lh)/1 \le j \le M - 1, -N \le l \le N \},$$

$$\bar{\Omega}_{M,N} = \{ (x_1^{(j)}, lh)/0 \le j \le M, -N \le l \le N \}.$$

The discrete inner products and norms are defined as follows

$$\langle u, v \rangle_{M} = \sum_{j=0}^{M} u(x_{1}^{(j)}) v(x_{1}^{(j)}) \omega^{(j)},$$

$$(u, v)_{M,N} = \frac{1}{2N+1} \sum_{j=0}^{M} \sum_{l=-N}^{N} u(x_{1}^{(j)}, lh) \bar{v}(x_{1}^{(j)}, lh) \omega^{(j)},$$

$$||u||_{M,N} = (u, u)_{M,N}^{\frac{1}{2}}, \quad |u|_{1,M,N} = (\sum_{j=1}^{2} ||\partial_{j}u||_{M,N}^{2})^{\frac{1}{2}}.$$