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Abstract

This paper presents optimum an one-parameter iteration (OOPI) method and
a multi-parameter iteration direct (MPID) method for efficiently solving linear
algebraic systems with low order matrix A and high order matrix B: ¥ = (A ®
B)Y + ®. On parallel computers (also on serial computer) the former will be
efficient, even very efficient under certain conditions, the latter will be universally
very efficient.
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1. Introduction

It is well known that for IVP of stiff ODEs
v =f(y), to<t<T ylto) =y €R™, f:QeR"ER™, m>0 (1.1)

implicit method with good stability have to be used, e.g., IRK methods!”, implicit
block methods!®12-1718] etc. At each integral step, each of all these methods brings
about solving block nonlinear equation systems

Y=h(AQI,)F(Y)+ &, AcR™, Y, F(Y),®€R™, ms>0, (1.2)

where h is the stepsize, ® kronecker product, I,,, € R™ identity matrix, Y = (y!,¢yJ, .-,
yIT F(Y) = (f(y)Y, -+, fys)T)?. Now, efficiently solving (1.2) become a key of
efficiently solving (1.1).
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Let
fly) =By +y, (1.3)

where B € R™™ is a constant matrix, g € R™ is a constant vector. For the definite

problems of linear evolution equations systems

8_1: = Lu+l(t,$1,$2a"'a$q)v

where L is a linear partial differential operator with respect to the space variables
L1, T2, Tq,

l(t,z1,22, -+, x4) is a known continuous function of the time variable ¢ and space
variable z1, z2, - - -, z4. Using the semi-discrete method, we can obtain (1.1)(1.3). Under
the condition (1.3), (1.2) can be written as a linear equation system

Y = (A® B)Y + @, (1.4)

here B = hB, ® = h((4e)®g) + ®1,e = (1,1,---,1)T € R®.

The research of solution method for (1.2) have had a number of results23:56:17],
We attempt to set up an universal efficient solution method for (1.1), (1.2) by the way
of the construction of efficient solution method for (1.4). This aim have been achieved.
As the space is limited, the paper only discusses solution methods for (1.4). As to
solution methods for (1.2), we shall discuss then in another paper.

In order to set up an universal efficient solution method for (1.1)(1.3)(1.4) which
can be generalized to establish an universal efficient solution method for (1.1)(1.2), we
do some analyses for (1.4) produced from (1.2)(1.3).

Unlike general linear systems, (1.4) produced from (1.1)(1.3) have following features:

i) A in (1.4) is only determined by the method used by solution of (1.1)(1.3), its
orders is lower. Usually, s € [2, 6], about at most doesn’t exceed 10;

ii) To ensure the accuracy of numerical solution, the discrete stepsize h; adopted
in the directions of the space variable z;,7 = 1(1)q are sufficient small, therefore m is
a large number. When m > 0, to solve (1.4) need to use parallel computers(or vector
computer) usually.

iii) For the accurate solution Y = Y™ of (1.4), there is an initial approximation Yj
with good accuracy.

Establishing an efficient solution method for (1.1)(1.2) (or ((1.1)(1.3)(1.4)) we must
consider all of the three points.

For a matrix equation
AAX+XB=Cy, A €R*, Bye R™, (Ci, X e&R", (1.5)
which is equivalent to

X=-(A'eBHX +(A['®1,)C,



