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Abstract

In this article we discuss a new full discrete scheme for the numerical solu-
tion of the Navier-Stokes equations modeling viscous incompressible flow. This
scheme consists of nonlinear Galerkin method using mixed finite elements and
Crank-Nicolson method. Next, we provide the second-order convergence accu-
racy of numerical solution corresponding to this scheme. Compared with the usual
Galerkin scheme, this scheme can save a large amount of computational time under
the same convergence accuracy.
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1. Introduction

Nonlinear Galerkin method is numerical method for dissipative evolution partial
differential equations where the spatial discretization relies on a nonlinear manifold
instead of a linear space as in the classical Galerkin method. More precisely, one
considers a finite dimensional space Vj, — h being some parameter related to the spatial
discretization—which is splitted as V, = Vg + W}, where H > h and W}, is a convenient
supplementary of Vi in Vj,. One looks for an approximate solution u” lying in a
maniflod ¥ = graph¢ of V},; u takes the form u” = v + ¢(v) where v" lies in Vi and
¢ is a mapping from Vy into W},. The method reduces to an evolution equation for v,
obtained by projecting the equations under consideration on the manifold ¥ = graphd.
The related works see [1, 2, 3]. In a classical Galerkin method, typically, we have ¢ = 0.

(23] have extended the nonlinear Galekrin method to the Navier-Stokes

The papers
equations in the framework of mixed finite elements. However, the paper? does not
deal with the case of time discretization and the paper!® only obtains the first-order
convergence accaracy for time discretization. Our purpose here is to modify the approx-
imate scheme of [2] and consider the discretization with respect to time of the modified
scheme by the Crank-Nicolson method!*. Also, we aim to derive the full second-order
convergence accuracy of numerical solution corresponding to this full discrete scheme.
Finally, we compare the full discerete scheme with the usual Galerkin scheme, which

shows that the new full discrete scheme is more simple than the usual Galerkin scheme.
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2. The Navier-Stokes Equations

Let Q be a bounded domain in R? assumed to have a Lipschitz-continuous boundary
I'. We consider the time-dependent Navier-Stokes equations describing the flow of a
viscous incompressible fluid confined in Q:

0

a—:—VAu—i-(u-V)u—l—Vp:f in QxR'
divu=0 in Qx R" (2.1)
u=0 on I'x RT

u(0) = ug in Q

where u = (u1,usg) is the velocity, p is the pressure, f represents the density of body
force, v > 0 is the viscosity and wug is the initial velocity with divug = 0.
In order to introduce a variational formulation, we set

Y = 122, M = L3(Q) = {q € LQ(Q);/qu:r =0}

We denote by (-,-), |- | the inner product and norm on L?(Q2) or L?(Q)? and identify
L?(Q) with its dual space. We set

1
Au = —vAu, B(u,v)=(u-V)v+ §(div u)v

It is well known that A is a linear unbounded self-adjoint operator in Y with domain
D(A) = (H%(Q) N H}(2))? dense in Y; and A is positive closed and the inverse A~! of
A is compact, self-adjoint in Y. We then can define the powers A® of A for any s € R;
the space D(A?®) is a Hilbert space when endowed with the scalar product (A*-, A®-)
and norm |A® - |. We set

1 1 L1
X = D(AZ) = Hy ()% | - [|= |42 - [, ((-,) = (A2, A7)
Next, we define the bilinear forms

a(u,v) = v(Au,v) Yu,v € X
D(v,q) = (¢, divv) Yve X,qge M

and the trilinear form
b(u,v,w) = (B(u,v),w) Yu,v,w €W

So, we obtain the variational formulation of problem (2.1):
For any ¢ > 0, find a pair (u(t),p(t)) € X x M such that

(ug,v) + a(u,v) + b(u,u,v) — D(v,p) = (f,v) Yve X
D(u,q) =0 VYge M (2.2)



