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ON THE LINEAR CONVERGENCE OF PC-METHOD FOR ACLASS OF LINEAR VARIATIONAL INEQUALITIES�Nai-hua Xiu(Department of Mathemati
s, Nothern Jiaotong University, Beijing 100044, China; Instituteof Applied Mathemati
s, Chinese A
ademy of S
ien
es, Beijing 100080, China)Abstra
tThis paper studies the linear 
onvergen
e properties of a 
lass of the proje
tionand 
ontra
tion methods for the aÆne variational inequalities, and proposes ane
essary and suÆ
ient 
ondition under whi
h PC-Method has a globally linear
onvergen
e rate.Key words: AÆne variational inequality, Proje
tion and 
ontra
tion method, Lin-ear 
onvergen
e. 1. Introdu
tionLet M be an n�n matrix and let q be a ve
tor in Rn, the n-dimensional En
lideanspa
e. Let 
 be an nonempty 
losed 
onvex set. The linear variational inequalityproblem (denoted by (LV I)) is to �nd x� 2 
 su
h that(x� x�)T (Mx� + q) � 0; 8x 2 
: (1:1)The problem (1.1) is well known in optimization and 
ontains as spe
ial 
ases linear(and quadrati
) programming, bimatrix game, et
. (see Cottle and Dantzig [1℄). When
 is a polyhedral set, for 
onvenien
e expressed asX = fx 2 RnjAx � bg; A 2 Rm�n; b 2 Rm; (1:2)it is 
alled the aÆne variational inequality problem (AV I). When 
 = Rn+; the nonneg-ative orthant in Rn, it is again 
alled the linear 
omplementarity problem (LCP ): Forthese subje
ts, many 
omputational methods and theoreti
al results have been devel-oped (See Harker and Pang [2℄, Cottle, Pang and Stone [3℄, Isa
 [4℄ et
.). An important
lass of methods is the proje
tion-type method, originally proposed by Goldstein [5℄,Levitin and Polyak [6℄ for solving 
onvex programming. More re
ently, He [7{12℄ hasproposed a spe
ial 
lass of the proje
tion methods for problem (1.1). The iterativeform is as follows. Given xk 2 Rn (or 
), �nd the sear
h dire
tion d(xk) su
h that itsatis�es xk+1 = xk � �k � d(xk); or xk+1 = P
[xk � �kd(xk)℄; (1.3a)� Re
eived September 3, 1996.



200 N.H. XIUkxk+1 � x�k2G � kxk � x�k2G � �k � ke(xk)k2; (1.3b)where �k > 0 is the sear
h step length, �k is a positive number, G 2 Rn�n is symmetri
and positive de�nite, kxkG = (xTGx) 12 ; P
[�℄ denotes the proje
tion from Rn onto 
,i.e., P
[x℄ = argminfkx� yk j8y 2 
g; (1:4)e(x) = x� P
[x� (Mx+ q)℄; and x� 2 
�, whi
h denotes the set of solutions of prob-lem (1.1). From (1.3) we readily see that the sequen
e fkxk � x�k2Gg has a 
ontra
tiveproperty. Therefore, He de�nes this 
lass of methods as the proje
tion and 
ontra
-tion method (PC-Method). The main advantages of the method are its simpli
ity,robustness and ability to handle the large-s
ale problems.In [12℄, He has summerized the basi
 idea of �nding the sear
h dire
tion d(x) ofPC-Method, i.e., for any x� 2 
�; it holds that(x� x�)Td(x) � r � ke(x)k2; r > 0; (1:5)and proven that the PC methods of He [7{11℄ are all globally 
onvergent for varietiesof monotone problems. However, He only prove that PC-Method is globally linearly
onvergent for the monotone linear 
omplementarity problem.The purpose of this paper is to develop the linear 
onvergen
e theory of PC-Method.The main results obtained in this paper are as follows.(a) For the monotone problem (AV I), a 
lass of PC methods is linearly 
onvergent.Furthermore, xk ! x� Q-linearly, ke(xk)k ! 0 R-linearly.(b) For strongly monotone problem (AV I), the ne
essary and suÆ
ient 
onditionunder whi
h a 
lass of PC methods has linearly 
onvergent rate is the sear
h dire
tiond(x) to be strongly des
ent (see Theorem 4.2).This paper is organized as follows. In se
tion 2, we give the de�nitions of thestri
tly des
ent dire
tion and strongly des
ent dire
tion, and dis
uss their 
onvergen
eproperties, whi
h extend the previous 
onvergen
e theory. In Se
tion 3, we investigatethe linear 
onvergen
e of PC-Method when it is applied to solve the monotone problem(AV I): Finally, Se
tion 4 
onsiders the spe
ial 
ase of (AV I) where M is positivede�nite.We adopt the following notations throughout. For any x 2 Rn and y 2 Rn, wedenote by xT y the Eu
lidean inner produ
t of x with y. For any x 2 Rn, we de�nekxk = (xTx) 12 : For any C1; C2 � Rn, we denote by dist(C1; C2) the usual Eu
lideandistan
e between two sets C1 and C2, that is,dist(C1; C2) = inffkx� yk jx 2 C1; y 2 C2g:For any symmetri
 matrix A 2 Rn�n; we denote by �min(A) (and �max(A)) the min-imum (and maximum) eigenvalue of A. Other notations have the usual meaning.Throughout this paper we assume that (H1) 
� 6= �; and (H2) M is positive semi-de�nite (but not ne
essarily symmetri
).


