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FINITE ELEMENT ANALYSIS OF A LOCAL EXPONENTIALLYFITTED SCHEME FOR TIME-DEPENDENTCONVECTION-DIFFUSION PROBLEMS�1)Xing-ye Yue(Department of Mathemati
s, Suzhou University, Suzhou 215006, China)Li-shang Jiang(Institute of Mathemati
s, Tongji University, Shanghai 200092, China)Tsi-min Shih(Department of Applied Mathemati
s, Hong Kong Polyte
hni
 University, Hong Kong)Abstra
tIn [16℄, Stynes and O'Riordan(91) introdu
ed a lo
al exponentially �tted �niteelement (FE) s
heme for a singularly perturbed two-point boundary value problemwithout turning-point. An "-uniform h1=2-order a

ura
y was obtain for the "-weighted energy norm. And this uniform order is known as an optimal one forglobal exponentially �tted FE s
hemes (see [6, 7, 12℄).In present paper, this s
heme is used to a paraboli
 singularly perturbed prob-lem. After some subtle analysis, a uniformly in " 
onvergent order hj lnhj1=2 + �is a
hieved (h is the spa
e step and � is the time step), whi
h sharpens the resultsin present literature. Furthermore, it implies that the a

ura
y order in [16℄ isa
tuallay hj lnhj1=2 rather than h1=2.Key words: Singularly perturbed, Exponentially �tted, Uniformly in " 
onvergent,Petrov-Galerkin �nite element method.1. Introdu
tionConsider the time-dependent 
onve
tion-di�usion problemut � "uxx + a(x; t)ux + b(x; t)u = f(x; t); (x; t) 2 [0; 1℄ � [0; T ℄ (1.1)u(0; t) = u(1; t) = 0; t 2 [0; T ℄; (1.2)u(x; 0) = u0(x); x 2 [0; 1℄; (1.3)a(x; t) � � > 0; (1.4)b(x; t)� ax(x; t)=2 � � > 0; (1.5)where 0 � " � 1. (1.1)-(1.5) 
an be regarded as a paraboli
 singularly perturbedproblem. In general, the solution has a boundary layer at the out
ow boundary x = 1.See [1℄ and [15℄ for dis
usss of the properties of u(x; t).Su
h problems are all pervasive in appli
ations of mathemati
s to problems in thes
ien
e and engineering. Among these are the Navier-Stokes equation of 
uid 
ow� Re
eived April 4, 1997.1)This work is supported by the NSFC.



226 X.Y. YUE, L.S. JIANG AND T.M. SHIHat high Reynolds number, the drift-di�usion of semi
ondu
tor, the mass 
onservationlaw in porous mediam. They have mainly hyperboli
 nature for " is small. Thismakes them diÆ
ult to solve numeri
ally. It's well know that 
lassi
al methods do notwork well for (1.1){(1.5) (see [3, 10℄). The main problem is how to 
onstru
t an "-uniformly 
onvergent s
heme. Many authors have suggested various methods to solvesu
h problems, see [2, 5, 9, 10, 13℄ and their referen
es for the dis
ussion of �nitedi�eren
e methods.As to "-uniformly 
onvergent FE s
heme, Gartland [4℄, Stynes and O'Rriordan [14,16℄, Guo [6{8℄ and Sun & Stynes [17℄ have 
onstru
ted quite a few methods. Guo 93[8℄ proved that any s
heme on a uniform mesh for (1.1){(1.5) that was globally L1
onvergent uniformly in ", 
ould not only have polynomial 
oeÆ
ients; the 
oeÆ
ientsmust depend on exponentials. But for highly nonequidistant meshes, su
h as Shiskin-type meshes, standard polynomial FE methods 
an also yield "-uniformly 
onvergentresults (see Th 2.54 of [12℄).In the following, we'll fo
us on a s
heme suggested by Stynes and O'Riordan 91 [16℄for a steady-
ase of (1.1){(1.5), whi
h we 
all as \lo
al exponentially �tted FE s
heme".They used exponentially �tted splines in the boundary layer region and outside it, thenormal 
ontinuous pie
ewise linear polynomials instead. An "-uniform 
onvengen
eorder h1=2 was obtained. Although this order is known as an optimal one for globalexponentially �tted FE s
hemes, we 
an sharpen it to order hj lnhj1=2 in the 
ase oflo
al exponential �tting as a 
orollary of our main result for (1.1){(1.5).2. The Lo
al Exponentially Fitted FE S
hemeBefore des
ribing the s
heme, we need to know the behavior of the solution u of(1.1){(1.5). Just for simpli
ity, we assume that a(x; t); b(x; t); f(x; t) and u0(x) aresuÆ
iently smooth and satisfy ne
essary 
ompatibility assumptions on the 
orners ofthe boundary. Then we have the following lemma.Lemma 2.1[15℄. (1.1){(1.5) has a unique smooth solution u(x; t) whi
h satis�esj�ix�jt u(x; t)j � C[1 + "�ie��(1�x)="℄ 8(x; t) 2 [0; 1℄ � [0; T ℄; (2.1)for 0 � i � 1 and 0 � i+ j � 2.Throughout this paper, C will denote a generi
 positive 
onstant independent of ".We work with an arbitrary tensor produ
t grid on [0; 1℄� [0; T ℄. In the x-dire
tion,let 0 = x0 < x1 < � � � < xN = 1, with hi = xi � xi�1 for i = 1; � � � ; N , and seth = maxi hi, �hi = (hi + hi+1)=2.We assume that hhi � C 8i = 1; � � � ; N:In the t-dire
tion, let 0 = t0 < t1 < � � � < tM = T , with �m = tm � tm�1, form = 1; 2; � � � ;M and � = maxm �m.Assuming 2"j ln "j=� < 1=2 (it is not a restri
tion for " is small), and setK = maxfi : 1� xi � 2"j ln "j=�g: (2.2)From lemma 2.1, we have


