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Abstract

As is well known, solving matrix multiple eigenvalue problems is a very difficult
topic. In this paper, Arnoldi type algorithms are proposed for large unsymmetric
multiple eigenvalue problems when the matrix A involved is diagonalizable. The
theoretical background is established, in which lower and upper error bounds for
eigenvectors are new for both Arnoldi’s method and a general perturbation prob-
lem, and furthermore these bounds are shown to be optimal and they generalize a
classical perturbation bound due to W. Kahan in 1967 for A symmetric. The algo-
rithms can adaptively determine the multiplicity of an eigenvalue and a basis of the
associated eigenspace. Numerical experiments show reliability of the algorithms.
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1. Introduction

[20]

The Lanczos algorithm!“” is a very powerful tool for extracting a few extreme

5221 Gince the

eigenvalues and associated eigenvectors of large symmetric matrices!*
1980’s, considerable attention has been paid to generalizing it to large unsymmetric
problems. One of its generalizations is Arnoldi’s method!’25]. It can be used to compute

[10,11,24,25,26,28] Ty order

outer part of the spectrum and corresponding eigenvectors
to improve overall performance, Saad[*” suggested to use it in conjunction with the
Chebyshev iteration. There are other variants available; see, e.g. [12, 13, 16, 17, 19,
24, 28].

To apply Arnoldi’s algorithm and its variants to practical problems, one must ac-
count for the following difficulty!3:6:8l;

Difficulty® Multiple eigenvalues are a common occurrence.

In the symmetric case, Parlett and Scott!?!! used the Lanczos algorithm with se-
lective orthogonalization to solve Difficulty*. Their algorithm maintains the semi-

orthogonality among the Lanczos vectors so as to avoid the occurrence of spurious
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eigenvalues and determines the multiplicities of the required eigenvalues and the as-
sociated eigenspaces by restarting. The key idea is that, before restarting, a new
initial vector is orthogonalized with respect to all the converged eigenvectors until the
eigenspace associated with a multiple eigenvalue is found.

In the unsymmetric case, the situation becomes much more complicated. The strat-
egy of restarting2!l cannot solve Difficulty* since the eigenvectors of unsymmetric ma-
trices are, in general, not mutually orthogonal just as those of symmetric matrices
are. The mutual orthogonality of eigenvectors forms the basis of the algorithm in [12].
Theoretically speaking, a simple simulation of the idea used in [21] suggests that be-
fore restarting we use Arnoldi’s method with a new initial vector orthogonal to all the
left eigenvectors of the matrix A associated with all the converged right eigenvectors.
Proceeding in such a way, we can find the multiplicities of the required eigenvalues
and determine the associated eigenspaces. However, an easy analysis/??l shows that
Arnoldi’s method is inefficient for computing the left eigenvectors of A. Of course,
one can apply Arnoldi’s method to A, the conjugate transpose of A, to get the left
eigenvectors of A, while this doubles the amount of computation.

In order to deal with Difficulty®, generalized block Lanczos methods are studied in
[10, 14]. They can be used to compute outer part of the spectrum and corresponding
eigenvectors, up to a multiplicity equal to block size when A is diagonalizable. However,
if the multiplicities of the required eigenvalues are bigger than block size, the block
algorithms themselves are not able to determine the multiplicity of an eigenvalue and
the associated eigenspace. Therefore, to be able to detect the multiplicity, the block
algorithms have to combine with other techniques in practice.

In this paper, we design Arnoldi type algorithms for solving Difficulty* when A is
diagonalizable. As is seen from [10, 14], the proposed idea is important not only in
its own right but also indispensable for the block Arnoldi method when block size is
smaller than or equal to the multiplicities of the required eigenvalues.

In Section 2, we introduce the notation used and go through the underlying Arnoldi
algorithm; in Section 3, assuming that A is diagonalizable, we present the theoretical
background of the Arnoldi type algorithms to be proposed in Section 4. Some of
the results, i.e. theoretical error bounds for eigenvectors, are new for both Arnoldi’s
method and a general perturbation problem; in Section 4 we present two Arnoldi type
algorithms to solve Difficulty®; in Section 5, we discuss some implementations of the
algorithms; in Section 6, we report three numerical examples to show reliability of the
algorithms, followed by some concluding remarks in Section 7.

2. The Underlying Arnoldi Algorithm

2.1. Notation

Throughout the paper, assume that A is an N x N real diagonalizable matrix,
N > 1 and it has M distinct eigenvalues A;, where the multiplicities of \; are d;, i =
1,2,---, M. Under this assumption let P; be the d;-dimensional eigenspace associated
with \; and the columns of ®;4, = (@1, @iz, - - -, pid;) form a basis of P;, where ||¢;;|| = 1



